Main Article Content

Abstract

This study investigates the steady rotation of a sphere in a viscous fluid with constant angular velocity, a phenomenon crucial for understanding thermal instability in rotating systems affected by viscosity. Theoretical analysis reveals that temperature increase at the sphere's surface, at the fluid-solid interface, is unstable and leads to spontaneous temperature escalation. We demonstrate that this temperature increase is a nonlinear process. Furthermore, we establish that the sphere's surface temperature should rise due to frictional effects as it moves through the dense medium. Employing the Navier-Stokes equations and the unsteady heat equation, we elucidate the significantly nonlinear nature of the unsteady heat process. Finally, we derive a general formula for fluid flows and present the results graphically.

Keywords

Constant rotation stickiness temperature angular velocity nonlinearity contact boundary

Article Details

References

  1. Abu-Zahra N. (2004). Real-time viscosity and density measurements of polymer melts using sensor fusion. Mechatronics. 800-803. https://doi.org/10.1016/j.mechatronics.2003.11.001
  2. Assia O., & Hakim D. (2010). Propagation of ultrasonic waves in viscous fluids. Faculty of Physics, University of Sciences and Technology Houari Boumedienne. 72-75. https://doi.org/10.5772/6857
  3. Chiu S., & Yiu H, & Pong S. (2001). Development of an in-line viscometer in an extrusion molding process. John Wiley. 919- 923. https://doi.org/10.1016/j.polymdegradstab.2013.12.036
  4. Franco, E., & Adamowski C. (2010). Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique. 11-113. https://doi.org/10.1109/TUFFC.2010.1524
  5. Henning B., & Daur P., & Prange S., & Dierks K., & Hauptmann P. (2000). In-line concentration measurement in complex liquids using ultrasonic sensors. Ultrasonics. 799-803. https://doi.org/10.1016/s0041-624x(99)00190-0
  6. Jin O., & Bau K. (2021). Instrument for simultaneous measurement of density and viscosity. Review of scientific instruments. 91-93. https://doi.org/10.1063/1.1140325
  7. Lawrence, C. J., & Weinbaum, S. (1998). The force on an axisymmetric body in linearized time dependent motion, Journal of Fluid Mechanics, vol. 171, 209–218. https://doi.org/10.1017/S0022112086001428
  8. Lawrence, C. J., & Weinbaum, S. (2012). The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid,” Journal of Fluid Mechanics, vol. 189, 463–489. https://doi.org/10.1017/S0022112088001107
  9. Lovalenti, P. M., & Brady, J. F. (2009). The hydrodynamic force on a rigid particle undergoing arbitrary time- dependent motion at small Reynolds number,” Journal of Fluid Mechanics, vol. 256, 561–605. https://doi.org/10.1017/S0022112093002885
  10. Mazur, P., & Bedeaux, D. (1998). A generalization of Faxen’s theorem to nonsteady motion of a sphere ´ through an incompressible fluid in arbitrary flow,” Physica, vol. 76, (2), 235–246. https://doi.org/10.1016/0031-8914(74)90197-9
  11. Maxey, M. R., & Riley, J. J. (2011). Equation of motion for a small rigid sphere in a nonuniform flow,” Physics of Fluids, vol. 26, (4), 883–889. https://doi.org/10.4236/als.2019.74012
  12. Mekawy M., & Afifi H., & El-Nagar K. (2003). Comparison between different methods for viscosity measurements. USA (NIST), 22-27. https://doi.org/10.5755/j01.u.66.4.1022
  13. Mei, R., & Lawrence, C. J., & Adrian, R. J. (2007). Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity,” Journal of Fluid Mechanics, vol. 233, 613–631. https://doi.org/10.1017/S0022112091000629
  14. Padmanabhan, M., (2006). Measurement of extensional viscosity of viscoelastic liquids foods. J. Food Eng. 311. https://doi.org/10.1016/0260-8774(94)00016-3
  15. Padmanyals, K., (2002 Measurement of extensional viscosity. 219-225. TAPPI JOURNAL https://research.abo.fi
  16. Stokes, G. G., (2000). On the theories of internal friction of fluids in motion,” Transactions of the Cambridge Philosophical Society, vol. 8, 287–305. https://doi: 10.4236/jmp.2023.146050
  17. Sano, T., (2003). Unsteady flow past a sphere at low Reynolds number,” Journal of Fluid Mechanics, vol. 112, 433–441. https://doi.org/10.1017/S002211209400279X
  18. Venkatalaxmi, A., & Padmavathi, B. S. and Amaranath, T. (2004). general solution of unsteady Stokes equations,” Fluid Dynamics Research. 35(3), 229–236. https://doi.org/10.1016/j.fluiddyn.2004.06.001
  19. Вопросу, к., (2019). о нестационарном и нелинейном нагреве. Физ, (2), 55-57. https://doi.org/10.36535/0233-6723-2022-205-10-15
  20. Гатчек Э., (2000). Вязкость жидкостей. — Л.: ОНТИ, 15-17. https://doi.org/10.18500/0869-6632-2019-27-1-53-62
  21. Гладков, С. О., (2018). О расчете времени остановки цилиндрического тела, вращающегося в сплошной вязкой среде. (3), 337-341. https://doi.org/10.18500/0869-6632-2019-27-1-53-62
  22. Гладков, С. О. (2009). К вопросу приложения второй ковариантной производной от векторной функции, 98 -103. https://doi.org/10.18384/2310-7251-2009-3-42-67
  23. Гнабаев, А. В., (2019). задачам гидродинамики и теории упругости. МГУ. Сер. Физ, 42-67. https://doi.org/10.18384/2310-7251-2019-3-42-67
  24. Гладков, С. О., (2016 ).нелинейной теории теплопроводности. техн. Физ, 2(2), 1-7. https://journals.ioffe.ru
  25. Глесстон, С., (1999). Лейдлер. Теория абсолютных скоростей реакций. М.: ИЛ, 82. http://convertonlinefree.com
  26. Карслоу, Г., (2007). Теплопроводность твердых тел. — М.: Наука, 11-14. https://doi.org/10.5281/zenodo.3522597
  27. Ландау, Л. Д., & Лифшиц, Е. М. (2002). Гидродинамика. — М.: Наука, 122-129. http://www.immsp.kiev.ua
  28. Орешина, И. В. (2012). Физический журнал Российский. – М.«МГУ, уни», ( 32), 44-49. https://cyberleninka.ru
  29. Севастьянов, Р. М. (2013). Зависимость вязкости от температуры. зап, (3), 111–114. https://doi.org/10.36535/0233-6723-2022-205-10-15
  30. Сивухин, Д.В. (2011). Дрейфовая теория движения заряжен-ной частицы в электромагнитных полях Вып, 287. https://doi.org/10.20948/prepr-2017-43
  31. Сидоров, В.И. (2008). классическая электродинамика, 155.https://journals.ioffe.ru
  32. Сидоров, В.И. (2010). мультипольная теория в электромагнетизме. (4), 329–335. https://journals.ioffe.ru
  33. Фогельсон, Р. Л. & Лихачев, Е. Р. (2001). Температурная зависимость вязкости. техн. Физ. (8), 128–131. https://doi.org/10.36535/0233-6723-2022-205-10-15
  34. Френкель, Я. И. (2002). Кинетическая теория жидкостей. — Л.: Наука, 49–51. URL: http://libr.msu.by/handle/123456789/10856
  35. Франкбаев, Д., Каменецкий, Д. А. (2016). гармонические по времени электромагнитные поля. допол. –М.: Наука, 492. https://:vyou@yandex.ru