Main Article Content

Abstract

This study investigates the steady rotation of a sphere in a viscous fluid with constant angular velocity, a phenomenon crucial for understanding thermal instability in rotating systems affected by viscosity. Theoretical analysis reveals that temperature increase at the sphere's surface, at the fluid-solid interface, is unstable and leads to spontaneous temperature escalation. We demonstrate that this temperature increase is a nonlinear process. Furthermore, we establish that the sphere's surface temperature should rise due to frictional effects as it moves through the dense medium. Employing the Navier-Stokes equations and the unsteady heat equation, we elucidate the significantly nonlinear nature of the unsteady heat process. Finally, we derive a general formula for fluid flows and present the results graphically.

Keywords

Constant rotation stickiness temperature angular velocity nonlinearity contact boundary

Article Details

How to Cite
Ebtekar, S. S. (2024). Review of Nonstationary and Nonlinear Heating of a Spherical Body Rotating in a Viscous Fluid with a Constant Angular Velocity. Journal of Natural Sciences – Kabul University, 7(2), 73–91. https://doi.org/10.62810/jns.v7i2.49

References

  1. Abu-Zahra N. (2004). Real-time viscosity and density measurements of polymer melts using sensor fusion. Mechatronics. 800-803. https://doi.org/10.1016/j.mechatronics.2003.11.001
  2. Assia O., & Hakim D. (2010). Propagation of ultrasonic waves in viscous fluids. Faculty of Physics, University of Sciences and Technology Houari Boumedienne. 72-75. https://doi.org/10.5772/6857
  3. Chiu S., & Yiu H, & Pong S. (2001). Development of an in-line viscometer in an extrusion molding process. John Wiley. 919- 923. https://doi.org/10.1016/j.polymdegradstab.2013.12.036
  4. Franco, E., & Adamowski C. (2010). Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique. 11-113. https://doi.org/10.1109/TUFFC.2010.1524
  5. Henning B., & Daur P., & Prange S., & Dierks K., & Hauptmann P. (2000). In-line concentration measurement in complex liquids using ultrasonic sensors. Ultrasonics. 799-803. https://doi.org/10.1016/s0041-624x(99)00190-0
  6. Jin O., & Bau K. (2021). Instrument for simultaneous measurement of density and viscosity. Review of scientific instruments. 91-93. https://doi.org/10.1063/1.1140325
  7. Lawrence, C. J., & Weinbaum, S. (1998). The force on an axisymmetric body in linearized time dependent motion, Journal of Fluid Mechanics, vol. 171, 209–218. https://doi.org/10.1017/S0022112086001428
  8. Lawrence, C. J., & Weinbaum, S. (2012). The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid,” Journal of Fluid Mechanics, vol. 189, 463–489. https://doi.org/10.1017/S0022112088001107
  9. Lovalenti, P. M., & Brady, J. F. (2009). The hydrodynamic force on a rigid particle undergoing arbitrary time- dependent motion at small Reynolds number,” Journal of Fluid Mechanics, vol. 256, 561–605. https://doi.org/10.1017/S0022112093002885
  10. Mazur, P., & Bedeaux, D. (1998). A generalization of Faxen’s theorem to nonsteady motion of a sphere ´ through an incompressible fluid in arbitrary flow,” Physica, vol. 76, (2), 235–246. https://doi.org/10.1016/0031-8914(74)90197-9
  11. Maxey, M. R., & Riley, J. J. (2011). Equation of motion for a small rigid sphere in a nonuniform flow,” Physics of Fluids, vol. 26, (4), 883–889. https://doi.org/10.4236/als.2019.74012
  12. Mekawy M., & Afifi H., & El-Nagar K. (2003). Comparison between different methods for viscosity measurements. USA (NIST), 22-27. https://doi.org/10.5755/j01.u.66.4.1022
  13. Mei, R., & Lawrence, C. J., & Adrian, R. J. (2007). Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity,” Journal of Fluid Mechanics, vol. 233, 613–631. https://doi.org/10.1017/S0022112091000629
  14. Padmanabhan, M., (2006). Measurement of extensional viscosity of viscoelastic liquids foods. J. Food Eng. 311. https://doi.org/10.1016/0260-8774(94)00016-3
  15. Padmanyals, K., (2002 Measurement of extensional viscosity. 219-225. TAPPI JOURNAL https://research.abo.fi
  16. Stokes, G. G., (2000). On the theories of internal friction of fluids in motion,” Transactions of the Cambridge Philosophical Society, vol. 8, 287–305. https://doi: 10.4236/jmp.2023.146050
  17. Sano, T., (2003). Unsteady flow past a sphere at low Reynolds number,” Journal of Fluid Mechanics, vol. 112, 433–441. https://doi.org/10.1017/S002211209400279X
  18. Venkatalaxmi, A., & Padmavathi, B. S. and Amaranath, T. (2004). general solution of unsteady Stokes equations,” Fluid Dynamics Research. 35(3), 229–236. https://doi.org/10.1016/j.fluiddyn.2004.06.001
  19. Вопросу, к., (2019). о нестационарном и нелинейном нагреве. Физ, (2), 55-57. https://doi.org/10.36535/0233-6723-2022-205-10-15
  20. Гатчек Э., (2000). Вязкость жидкостей. — Л.: ОНТИ, 15-17. https://doi.org/10.18500/0869-6632-2019-27-1-53-62
  21. Гладков, С. О., (2018). О расчете времени остановки цилиндрического тела, вращающегося в сплошной вязкой среде. (3), 337-341. https://doi.org/10.18500/0869-6632-2019-27-1-53-62
  22. Гладков, С. О. (2009). К вопросу приложения второй ковариантной производной от векторной функции, 98 -103. https://doi.org/10.18384/2310-7251-2009-3-42-67
  23. Гнабаев, А. В., (2019). задачам гидродинамики и теории упругости. МГУ. Сер. Физ, 42-67. https://doi.org/10.18384/2310-7251-2019-3-42-67
  24. Гладков, С. О., (2016 ).нелинейной теории теплопроводности. техн. Физ, 2(2), 1-7. https://journals.ioffe.ru
  25. Глесстон, С., (1999). Лейдлер. Теория абсолютных скоростей реакций. М.: ИЛ, 82. http://convertonlinefree.com
  26. Карслоу, Г., (2007). Теплопроводность твердых тел. — М.: Наука, 11-14. https://doi.org/10.5281/zenodo.3522597
  27. Ландау, Л. Д., & Лифшиц, Е. М. (2002). Гидродинамика. — М.: Наука, 122-129. http://www.immsp.kiev.ua
  28. Орешина, И. В. (2012). Физический журнал Российский. – М.«МГУ, уни», ( 32), 44-49. https://cyberleninka.ru
  29. Севастьянов, Р. М. (2013). Зависимость вязкости от температуры. зап, (3), 111–114. https://doi.org/10.36535/0233-6723-2022-205-10-15
  30. Сивухин, Д.В. (2011). Дрейфовая теория движения заряжен-ной частицы в электромагнитных полях Вып, 287. https://doi.org/10.20948/prepr-2017-43
  31. Сидоров, В.И. (2008). классическая электродинамика, 155.https://journals.ioffe.ru
  32. Сидоров, В.И. (2010). мультипольная теория в электромагнетизме. (4), 329–335. https://journals.ioffe.ru
  33. Фогельсон, Р. Л. & Лихачев, Е. Р. (2001). Температурная зависимость вязкости. техн. Физ. (8), 128–131. https://doi.org/10.36535/0233-6723-2022-205-10-15
  34. Френкель, Я. И. (2002). Кинетическая теория жидкостей. — Л.: Наука, 49–51. URL: http://libr.msu.by/handle/123456789/10856
  35. Франкбаев, Д., Каменецкий, Д. А. (2016). гармонические по времени электромагнитные поля. допол. –М.: Наука, 492. https://:vyou@yandex.ru