Main Article Content

Abstract

The unauthorized use of antibiotics in milk poses significant risks to human health and contributes to microbial resistance. Most milk consumed comes from cows, some of which may be treated with antibiotics. This study aims to explore methods for detecting antibiotics in milk and to assess the adverse effects of contaminated milk. The research employs a review method, revealing that while immunochemical, chromatography, and spectrometry methods are highly accurate, their high costs and time demands limit their use. In contrast, microbiological, enzymatic, and biochemical methods are more widely utilized, with various kits developed based on these techniques. Moreover, biosensor technologies are emerging as innovative methods with promising potential, and Marking method serve a preventive role. In conclusion, a variety of methods for antibiotic detection in milk have been developed, each with unique advantages, highlighting the importance of addressing antibiotic contamination for public health safety.

Keywords

Antibiotic biosensor immunochemical marking method milk microbial resistance

Article Details

References

  1. Abouzied, M., Driksna, D., Walsh, C., Sarzynski, M., Walsh, A., Ankrapp, D., . (2012). Validation study of the Betastar® Plus lateral flow assay for detection of beta-lactam antibiotics in milk. Journal of AOAC International, 95(4), 1211–1221. https://doi.org/10.5740/jaoacint.12-0343
  2. Ahmed, S., Ning, J., Peng, D., . (2020). Current advances in immunoassays for the detection of antibiotic residues: A review. Food Agriculture Immunology, 31(1), 268–290. https://doi.org/10.1080/09540105.2020.1763154
  3. Akbari Kishi, S., Asmar, M., & Mirpur, M. S. (2017). The study of antibiotic residues in raw and pasteurized milk in Gilan province. Iranian Journal of Medical Microbiology, 11(3), 71–77.
  4. Ali, M. S., Vahid, H., & Shokooh, Z. (2015). Detection of antibiotic residue in raw milk in Mashad by Delvo-test. Biotechnology, 11, 1–4.
  5. Althaus, R. L., Molina, M. P., Rodriguez, M., & Fernandez, N. (2001). Detection limits of β-lactam antibiotics in ewe milk by Penzym enzymatic test. Journal of Food Protection, 64(11), 1844–1847. https://doi.org/10.4315/0362-028X-64.11.1844
  6. Bitas, D., & Samanidou, V. F. (2018). Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules, 23(2), 316. https://doi.org/10.3390/molecules23020316
  7. Bonyadian, M., & Kordi, F. M. (2020). Comparison of yogurt test with commercial kit for detection of antibiotic residues in raw and pasteurized milk. Iranian Journal of Veterinary Medicine, 14(4), 229–237. https://doi.org/10.22059/ijvm.2020.295385.1005206
  8. Chen, W., Jie, W., Chen, Z., Jie, X., & Huang-Xian, J. (2012). Chemiluminescent immunoassay and its applications. Chinese Journal of Analytical Chemistry, 40(1), 3–10. https://doi.org/10.1016/S1872-2040(12)60002-4
  9. Codex Alimentarius Commission. (2015). Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. CAC/MRL 2-2015. https://www.fao.org/input/download/standards/45/MRL2_2015e.pdf
  10. Daryani, A., Hosseini-Teshnizi, S., & Sharif, M. (2014). Prevalence of microbial contamination in raw milk in the Alborz Province, Iran. Journal of Parasitic Diseases, 38(2), 194–197. https://doi.org/10.1007/s12639-013-0374-0
  11. Edberg, S. C., & Edberg, M. H. (2015). Handbook of food microbiology (2nd ed.). CRC Press.
  12. European Food Safety Authority (EFSA). (2014). Bánáti, D. European perspectives of food safety. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.6698
  13. Fan, G. Y., Yang, R. S., Jiang, J. Q., Chang, X. Y., Chen, J. J., Qi, Y. H., . (2012). Development of a class-specific polyclonal antibody-based indirect competitive ELISA for detecting fluoroquinolone residues in milk. Journal of Zhejiang University Science B, 13(7), 545–554. https://doi.org/10.1631/jzus.B1200068
  14. Ferguson, D. L., & Adams, M. (2012). Impact of antibiotic residues on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(4), 299–316. https://doi.org/10.1111/j.1541-4337.2012.00181.x
  15. Ferrini, A. M., Mannoni, V., Carpico, G., & Pellegrini, G. E. (2008). Detection and identification of β-lactam residues in milk using a hybrid biosensor. Journal of Agricultural and Food Chemistry, 56(3), 784–788. https://doi.org/10.1021/jf703704x
  16. Food and Agriculture Organization (FAO). (2010.). Guidelines for the use of veterinary drugs in animal husbandry. http://www.fao.org/3/a-y4762e.pdf
  17. Food and Agriculture Organization (FAO). (2011). Milk and dairy products in human nutrition. http://www.fao.org/3/a-i3396e.pdf
  18. Forbes, B. A., Sahm, D. F., & Weissfeld, A. S. (2007). Bailey & Scott's diagnostic microbiology (12th ed.). Mosby.
  19. Gao, J., Ferreri, M., Liu, X. Q., Chen, L. B., Su, J. L., & Han, B. (2011). Development of multiplex polymerase chain reaction assay for rapid detection of Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. Journal of Veterinary Diagnostic Investigation, 23(5), 894–901. https://doi.org/10.1177/1040638711422290
  20. Gonzalez, C. A., & Melgarejo, T. (2005). Antibiotics in animal feed: A review of their use, benefits, and risks. Veterinary Research Communications, 29(3), 187–201. https://doi.org/10.1007/s11259-005-0002-6
  21. Horvath, C., & Lin, H. J. (1976). Movement and band spreading of unsorbed solutes in liquid chromatography. Journal of Chromatography A, 126, 401–420. https://doi.org/10.1016/s0021-9673(01)84088-7
  22. Huang, Z. (2014). Development of an indirect competitive ELISA for detection of danofloxacin residue in milk. International Food Research Journal, 21(4), 1419–1424.
  23. International Agency for Research on Cancer (IARC). (2021). Monographs on the evaluation of carcinogenic risks to humans. https://monographs.iarc.who.int/
  24. Kebede, G., Zenebe, T., Disassa, H., & Tolosa, T. (2014). Review on detection of antimicrobial residues in raw bulk milk in dairy farms. Journal of Applied Sciences, 6(4), 87–97. https://doi.org/10.3923/jas.2014.87.97
  25. McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: A one health perspective. Microbiology Australia, 39(1), 10–13. https://doi.org/10.1071/MA17090
  26. Möhrle, V., Stadler, M., & Eberz, G. (2007). Biosensor-guided screening for macrolides. Analytical and Bioanalytical Chemistry, 388(5-6), 1117–1125. https://doi.org/10.1007/s00216-007-1385-0
  27. Mohsenzadeh, M., & Bahrainipour, A. (2008). The detection limits of antimicrobial agents in cow's milk by a simple yoghurt culture test. Pakistan Journal of Biological Sciences, 11(18), 2282–2285. https://doi.org/10.3923/pjbs.2008.2282.2285
  28. Patel, P. (2002). (Bio)sensors for measurement of analytes implicated in food safety: A review. Biosensors and Bioelectronics, 21(2), 96–115. https://doi.org/10.1016/s0165-9936(01)00136-4
  29. Shankar, B., Manjunatha Prabhu, B., Chandan, S., Ranjith, D., & Shivakumar, V. (2010). Rapid methods for detection of veterinary drug residues in meat. Veterinary World, 3(5), 235–240. https://doi.org/10.5455/vetworld.2010.235-240
  30. Smith, D. S., & Eremin, S. A. (2008). Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Analytical and Bioanalytical Chemistry, 391(5), 1499–1507. https://doi.org/10.1007/s00216-008-1740-x
  31. Smith, R. D., & McKellar, Q. A. (2003). Antimicrobial growth promoters: Overview and history. Journal of Animal Science, 81(E-Suppl 1), 11–20. https://doi.org/10.2527/jas.2003-109
  32. Tasci, F., Canbay, H. S., & Doganturk, M. (2021). Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method. Food Control, 127, 108147. https://doi.org/10.1016/j.foodcont.2021.108147
  33. Tornadijo, M. E., Fresno, J. M., & Carballo, J. (2017). Starter cultures for fermented milk products. In Fermented milks (pp. 35–57). CRC Press.
  34. U.S. Food and Drug Administration (FDA). (2018). Guidance for industry: Residues of veterinary drugs in food. https://www.fda.gov/media/116930/download
  35. Van Boeckel, T. P., Brower, C., Gilbert, M., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
  36. Vanderhaeghen, W., Hermans, K., Haesebrouck, F., & Butaye, P. (2010). Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiology and Infection, 138(5), 606–625. https://doi.org/10.1017/S0950268809991142
  37. Wang, G., Zhang, M., Zhao, J., Xia, Y., & Wang, Z. (2018). Assessment of bacterial communities in raw cow milk and their impacts on the quality and safety of milk products. Food Microbiology, 72, 153–162. https://doi.org/10.1016/j.fm.2017.09.015
  38. Wang, Y., Gan, N., Li, T., Cao, Y., Hu, F., & Chen, Y. (2016). A novel aptamer–quantum dot fluorescence probe for specific detection of antibiotic residues in milk. Analytical Methods, 8(15), 3006–3013. https://doi.org/10.1039/c6ay00571e
  39. World Health Organization (WHO). (2010). Report of the WHO Expert Committee on Food Additives: 72nd meeting. https://www.who.int/foodsafety/publications/chemical-foods/food-additives-report/en/
  40. World Organisation for Animal Health (OIE). (2016). OIE guidelines on the responsible use of antibiotics. https://www.oie.int/en/document/oie-guidelines-on-the-responsible-use-of-antibiotics/
  41. Xiu, Y., Luo, R., Han, B., Liu, L., & Wang, H. (2020). Construction of Co@C hybrid nanostructure: Electrochemical biosensor for detection of penicillin sodium in milk. Food Analytical Methods, 13, 617–628. https://doi.org/10.1007/s11483-019-00329-5
  42. Zdolec, N., Dobranić, V., Butković, I., Koturić, A., Filipović, I., & Medvid, V. (2016). Antimicrobial susceptibility of milk bacteria from healthy and drug-treated cow udder. Veterinarski Arhiv, 86(2), 163–172.
  43. Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782. https://doi.org/10.1021/acs.est.5b00721
  44. Zhang, Z., Wang, H., Zhang, Y., & Wei, D. (2018). Current advances in immunoassays for detection of small molecules: From simple to simply amazing. Biosensors and Bioelectronics, 106, 222–237. https://doi.org/10.1016/j.bios.2018.01.063