Main Article Content
Abstract
The unauthorized use of antibiotics in milk poses significant risks to human health and contributes to microbial resistance. Most milk consumed comes from cows, some of which may be treated with antibiotics. This study aims to explore methods for detecting antibiotics in milk and to assess the adverse effects of contaminated milk. The research employs a review method, revealing that while immunochemical, chromatography, and spectrometry methods are highly accurate, their high costs and time demands limit their use. In contrast, microbiological, enzymatic, and biochemical methods are more widely utilized, with various kits developed based on these techniques. Moreover, biosensor technologies are emerging as innovative methods with promising potential, and Marking method serve a preventive role. In conclusion, a variety of methods for antibiotic detection in milk have been developed, each with unique advantages, highlighting the importance of addressing antibiotic contamination for public health safety.
Keywords
Article Details
Copyright (c) 2024 Copyright Reserved for Kabul University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abouzied, M., Driksna, D., Walsh, C., Sarzynski, M., Walsh, A., Ankrapp, D., . (2012). Validation study of the Betastar® Plus lateral flow assay for detection of beta-lactam antibiotics in milk. Journal of AOAC International, 95(4), 1211–1221. https://doi.org/10.5740/jaoacint.12-0343
- Ahmed, S., Ning, J., Peng, D., . (2020). Current advances in immunoassays for the detection of antibiotic residues: A review. Food Agriculture Immunology, 31(1), 268–290. https://doi.org/10.1080/09540105.2020.1763154
- Akbari Kishi, S., Asmar, M., & Mirpur, M. S. (2017). The study of antibiotic residues in raw and pasteurized milk in Gilan province. Iranian Journal of Medical Microbiology, 11(3), 71–77.
- Ali, M. S., Vahid, H., & Shokooh, Z. (2015). Detection of antibiotic residue in raw milk in Mashad by Delvo-test. Biotechnology, 11, 1–4.
- Althaus, R. L., Molina, M. P., Rodriguez, M., & Fernandez, N. (2001). Detection limits of β-lactam antibiotics in ewe milk by Penzym enzymatic test. Journal of Food Protection, 64(11), 1844–1847. https://doi.org/10.4315/0362-028X-64.11.1844
- Bitas, D., & Samanidou, V. F. (2018). Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules, 23(2), 316. https://doi.org/10.3390/molecules23020316
- Bonyadian, M., & Kordi, F. M. (2020). Comparison of yogurt test with commercial kit for detection of antibiotic residues in raw and pasteurized milk. Iranian Journal of Veterinary Medicine, 14(4), 229–237. https://doi.org/10.22059/ijvm.2020.295385.1005206
- Chen, W., Jie, W., Chen, Z., Jie, X., & Huang-Xian, J. (2012). Chemiluminescent immunoassay and its applications. Chinese Journal of Analytical Chemistry, 40(1), 3–10. https://doi.org/10.1016/S1872-2040(12)60002-4
- Codex Alimentarius Commission. (2015). Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. CAC/MRL 2-2015. https://www.fao.org/input/download/standards/45/MRL2_2015e.pdf
- Daryani, A., Hosseini-Teshnizi, S., & Sharif, M. (2014). Prevalence of microbial contamination in raw milk in the Alborz Province, Iran. Journal of Parasitic Diseases, 38(2), 194–197. https://doi.org/10.1007/s12639-013-0374-0
- Edberg, S. C., & Edberg, M. H. (2015). Handbook of food microbiology (2nd ed.). CRC Press.
- European Food Safety Authority (EFSA). (2014). Bánáti, D. European perspectives of food safety. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.6698
- Fan, G. Y., Yang, R. S., Jiang, J. Q., Chang, X. Y., Chen, J. J., Qi, Y. H., . (2012). Development of a class-specific polyclonal antibody-based indirect competitive ELISA for detecting fluoroquinolone residues in milk. Journal of Zhejiang University Science B, 13(7), 545–554. https://doi.org/10.1631/jzus.B1200068
- Ferguson, D. L., & Adams, M. (2012). Impact of antibiotic residues on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(4), 299–316. https://doi.org/10.1111/j.1541-4337.2012.00181.x
- Ferrini, A. M., Mannoni, V., Carpico, G., & Pellegrini, G. E. (2008). Detection and identification of β-lactam residues in milk using a hybrid biosensor. Journal of Agricultural and Food Chemistry, 56(3), 784–788. https://doi.org/10.1021/jf703704x
- Food and Agriculture Organization (FAO). (2010.). Guidelines for the use of veterinary drugs in animal husbandry. http://www.fao.org/3/a-y4762e.pdf
- Food and Agriculture Organization (FAO). (2011). Milk and dairy products in human nutrition. http://www.fao.org/3/a-i3396e.pdf
- Forbes, B. A., Sahm, D. F., & Weissfeld, A. S. (2007). Bailey & Scott's diagnostic microbiology (12th ed.). Mosby.
- Gao, J., Ferreri, M., Liu, X. Q., Chen, L. B., Su, J. L., & Han, B. (2011). Development of multiplex polymerase chain reaction assay for rapid detection of Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. Journal of Veterinary Diagnostic Investigation, 23(5), 894–901. https://doi.org/10.1177/1040638711422290
- Gonzalez, C. A., & Melgarejo, T. (2005). Antibiotics in animal feed: A review of their use, benefits, and risks. Veterinary Research Communications, 29(3), 187–201. https://doi.org/10.1007/s11259-005-0002-6
- Horvath, C., & Lin, H. J. (1976). Movement and band spreading of unsorbed solutes in liquid chromatography. Journal of Chromatography A, 126, 401–420. https://doi.org/10.1016/s0021-9673(01)84088-7
- Huang, Z. (2014). Development of an indirect competitive ELISA for detection of danofloxacin residue in milk. International Food Research Journal, 21(4), 1419–1424.
- International Agency for Research on Cancer (IARC). (2021). Monographs on the evaluation of carcinogenic risks to humans. https://monographs.iarc.who.int/
- Kebede, G., Zenebe, T., Disassa, H., & Tolosa, T. (2014). Review on detection of antimicrobial residues in raw bulk milk in dairy farms. Journal of Applied Sciences, 6(4), 87–97. https://doi.org/10.3923/jas.2014.87.97
- McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: A one health perspective. Microbiology Australia, 39(1), 10–13. https://doi.org/10.1071/MA17090
- Möhrle, V., Stadler, M., & Eberz, G. (2007). Biosensor-guided screening for macrolides. Analytical and Bioanalytical Chemistry, 388(5-6), 1117–1125. https://doi.org/10.1007/s00216-007-1385-0
- Mohsenzadeh, M., & Bahrainipour, A. (2008). The detection limits of antimicrobial agents in cow's milk by a simple yoghurt culture test. Pakistan Journal of Biological Sciences, 11(18), 2282–2285. https://doi.org/10.3923/pjbs.2008.2282.2285
- Patel, P. (2002). (Bio)sensors for measurement of analytes implicated in food safety: A review. Biosensors and Bioelectronics, 21(2), 96–115. https://doi.org/10.1016/s0165-9936(01)00136-4
- Shankar, B., Manjunatha Prabhu, B., Chandan, S., Ranjith, D., & Shivakumar, V. (2010). Rapid methods for detection of veterinary drug residues in meat. Veterinary World, 3(5), 235–240. https://doi.org/10.5455/vetworld.2010.235-240
- Smith, D. S., & Eremin, S. A. (2008). Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Analytical and Bioanalytical Chemistry, 391(5), 1499–1507. https://doi.org/10.1007/s00216-008-1740-x
- Smith, R. D., & McKellar, Q. A. (2003). Antimicrobial growth promoters: Overview and history. Journal of Animal Science, 81(E-Suppl 1), 11–20. https://doi.org/10.2527/jas.2003-109
- Tasci, F., Canbay, H. S., & Doganturk, M. (2021). Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method. Food Control, 127, 108147. https://doi.org/10.1016/j.foodcont.2021.108147
- Tornadijo, M. E., Fresno, J. M., & Carballo, J. (2017). Starter cultures for fermented milk products. In Fermented milks (pp. 35–57). CRC Press.
- U.S. Food and Drug Administration (FDA). (2018). Guidance for industry: Residues of veterinary drugs in food. https://www.fda.gov/media/116930/download
- Van Boeckel, T. P., Brower, C., Gilbert, M., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
- Vanderhaeghen, W., Hermans, K., Haesebrouck, F., & Butaye, P. (2010). Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiology and Infection, 138(5), 606–625. https://doi.org/10.1017/S0950268809991142
- Wang, G., Zhang, M., Zhao, J., Xia, Y., & Wang, Z. (2018). Assessment of bacterial communities in raw cow milk and their impacts on the quality and safety of milk products. Food Microbiology, 72, 153–162. https://doi.org/10.1016/j.fm.2017.09.015
- Wang, Y., Gan, N., Li, T., Cao, Y., Hu, F., & Chen, Y. (2016). A novel aptamer–quantum dot fluorescence probe for specific detection of antibiotic residues in milk. Analytical Methods, 8(15), 3006–3013. https://doi.org/10.1039/c6ay00571e
- World Health Organization (WHO). (2010). Report of the WHO Expert Committee on Food Additives: 72nd meeting. https://www.who.int/foodsafety/publications/chemical-foods/food-additives-report/en/
- World Organisation for Animal Health (OIE). (2016). OIE guidelines on the responsible use of antibiotics. https://www.oie.int/en/document/oie-guidelines-on-the-responsible-use-of-antibiotics/
- Xiu, Y., Luo, R., Han, B., Liu, L., & Wang, H. (2020). Construction of Co@C hybrid nanostructure: Electrochemical biosensor for detection of penicillin sodium in milk. Food Analytical Methods, 13, 617–628. https://doi.org/10.1007/s11483-019-00329-5
- Zdolec, N., Dobranić, V., Butković, I., Koturić, A., Filipović, I., & Medvid, V. (2016). Antimicrobial susceptibility of milk bacteria from healthy and drug-treated cow udder. Veterinarski Arhiv, 86(2), 163–172.
- Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782. https://doi.org/10.1021/acs.est.5b00721
- Zhang, Z., Wang, H., Zhang, Y., & Wei, D. (2018). Current advances in immunoassays for detection of small molecules: From simple to simply amazing. Biosensors and Bioelectronics, 106, 222–237. https://doi.org/10.1016/j.bios.2018.01.063
References
Abouzied, M., Driksna, D., Walsh, C., Sarzynski, M., Walsh, A., Ankrapp, D., . (2012). Validation study of the Betastar® Plus lateral flow assay for detection of beta-lactam antibiotics in milk. Journal of AOAC International, 95(4), 1211–1221. https://doi.org/10.5740/jaoacint.12-0343
Ahmed, S., Ning, J., Peng, D., . (2020). Current advances in immunoassays for the detection of antibiotic residues: A review. Food Agriculture Immunology, 31(1), 268–290. https://doi.org/10.1080/09540105.2020.1763154
Akbari Kishi, S., Asmar, M., & Mirpur, M. S. (2017). The study of antibiotic residues in raw and pasteurized milk in Gilan province. Iranian Journal of Medical Microbiology, 11(3), 71–77.
Ali, M. S., Vahid, H., & Shokooh, Z. (2015). Detection of antibiotic residue in raw milk in Mashad by Delvo-test. Biotechnology, 11, 1–4.
Althaus, R. L., Molina, M. P., Rodriguez, M., & Fernandez, N. (2001). Detection limits of β-lactam antibiotics in ewe milk by Penzym enzymatic test. Journal of Food Protection, 64(11), 1844–1847. https://doi.org/10.4315/0362-028X-64.11.1844
Bitas, D., & Samanidou, V. F. (2018). Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules, 23(2), 316. https://doi.org/10.3390/molecules23020316
Bonyadian, M., & Kordi, F. M. (2020). Comparison of yogurt test with commercial kit for detection of antibiotic residues in raw and pasteurized milk. Iranian Journal of Veterinary Medicine, 14(4), 229–237. https://doi.org/10.22059/ijvm.2020.295385.1005206
Chen, W., Jie, W., Chen, Z., Jie, X., & Huang-Xian, J. (2012). Chemiluminescent immunoassay and its applications. Chinese Journal of Analytical Chemistry, 40(1), 3–10. https://doi.org/10.1016/S1872-2040(12)60002-4
Codex Alimentarius Commission. (2015). Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. CAC/MRL 2-2015. https://www.fao.org/input/download/standards/45/MRL2_2015e.pdf
Daryani, A., Hosseini-Teshnizi, S., & Sharif, M. (2014). Prevalence of microbial contamination in raw milk in the Alborz Province, Iran. Journal of Parasitic Diseases, 38(2), 194–197. https://doi.org/10.1007/s12639-013-0374-0
Edberg, S. C., & Edberg, M. H. (2015). Handbook of food microbiology (2nd ed.). CRC Press.
European Food Safety Authority (EFSA). (2014). Bánáti, D. European perspectives of food safety. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.6698
Fan, G. Y., Yang, R. S., Jiang, J. Q., Chang, X. Y., Chen, J. J., Qi, Y. H., . (2012). Development of a class-specific polyclonal antibody-based indirect competitive ELISA for detecting fluoroquinolone residues in milk. Journal of Zhejiang University Science B, 13(7), 545–554. https://doi.org/10.1631/jzus.B1200068
Ferguson, D. L., & Adams, M. (2012). Impact of antibiotic residues on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(4), 299–316. https://doi.org/10.1111/j.1541-4337.2012.00181.x
Ferrini, A. M., Mannoni, V., Carpico, G., & Pellegrini, G. E. (2008). Detection and identification of β-lactam residues in milk using a hybrid biosensor. Journal of Agricultural and Food Chemistry, 56(3), 784–788. https://doi.org/10.1021/jf703704x
Food and Agriculture Organization (FAO). (2010.). Guidelines for the use of veterinary drugs in animal husbandry. http://www.fao.org/3/a-y4762e.pdf
Food and Agriculture Organization (FAO). (2011). Milk and dairy products in human nutrition. http://www.fao.org/3/a-i3396e.pdf
Forbes, B. A., Sahm, D. F., & Weissfeld, A. S. (2007). Bailey & Scott's diagnostic microbiology (12th ed.). Mosby.
Gao, J., Ferreri, M., Liu, X. Q., Chen, L. B., Su, J. L., & Han, B. (2011). Development of multiplex polymerase chain reaction assay for rapid detection of Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. Journal of Veterinary Diagnostic Investigation, 23(5), 894–901. https://doi.org/10.1177/1040638711422290
Gonzalez, C. A., & Melgarejo, T. (2005). Antibiotics in animal feed: A review of their use, benefits, and risks. Veterinary Research Communications, 29(3), 187–201. https://doi.org/10.1007/s11259-005-0002-6
Horvath, C., & Lin, H. J. (1976). Movement and band spreading of unsorbed solutes in liquid chromatography. Journal of Chromatography A, 126, 401–420. https://doi.org/10.1016/s0021-9673(01)84088-7
Huang, Z. (2014). Development of an indirect competitive ELISA for detection of danofloxacin residue in milk. International Food Research Journal, 21(4), 1419–1424.
International Agency for Research on Cancer (IARC). (2021). Monographs on the evaluation of carcinogenic risks to humans. https://monographs.iarc.who.int/
Kebede, G., Zenebe, T., Disassa, H., & Tolosa, T. (2014). Review on detection of antimicrobial residues in raw bulk milk in dairy farms. Journal of Applied Sciences, 6(4), 87–97. https://doi.org/10.3923/jas.2014.87.97
McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: A one health perspective. Microbiology Australia, 39(1), 10–13. https://doi.org/10.1071/MA17090
Möhrle, V., Stadler, M., & Eberz, G. (2007). Biosensor-guided screening for macrolides. Analytical and Bioanalytical Chemistry, 388(5-6), 1117–1125. https://doi.org/10.1007/s00216-007-1385-0
Mohsenzadeh, M., & Bahrainipour, A. (2008). The detection limits of antimicrobial agents in cow's milk by a simple yoghurt culture test. Pakistan Journal of Biological Sciences, 11(18), 2282–2285. https://doi.org/10.3923/pjbs.2008.2282.2285
Patel, P. (2002). (Bio)sensors for measurement of analytes implicated in food safety: A review. Biosensors and Bioelectronics, 21(2), 96–115. https://doi.org/10.1016/s0165-9936(01)00136-4
Shankar, B., Manjunatha Prabhu, B., Chandan, S., Ranjith, D., & Shivakumar, V. (2010). Rapid methods for detection of veterinary drug residues in meat. Veterinary World, 3(5), 235–240. https://doi.org/10.5455/vetworld.2010.235-240
Smith, D. S., & Eremin, S. A. (2008). Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Analytical and Bioanalytical Chemistry, 391(5), 1499–1507. https://doi.org/10.1007/s00216-008-1740-x
Smith, R. D., & McKellar, Q. A. (2003). Antimicrobial growth promoters: Overview and history. Journal of Animal Science, 81(E-Suppl 1), 11–20. https://doi.org/10.2527/jas.2003-109
Tasci, F., Canbay, H. S., & Doganturk, M. (2021). Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method. Food Control, 127, 108147. https://doi.org/10.1016/j.foodcont.2021.108147
Tornadijo, M. E., Fresno, J. M., & Carballo, J. (2017). Starter cultures for fermented milk products. In Fermented milks (pp. 35–57). CRC Press.
U.S. Food and Drug Administration (FDA). (2018). Guidance for industry: Residues of veterinary drugs in food. https://www.fda.gov/media/116930/download
Van Boeckel, T. P., Brower, C., Gilbert, M., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
Vanderhaeghen, W., Hermans, K., Haesebrouck, F., & Butaye, P. (2010). Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiology and Infection, 138(5), 606–625. https://doi.org/10.1017/S0950268809991142
Wang, G., Zhang, M., Zhao, J., Xia, Y., & Wang, Z. (2018). Assessment of bacterial communities in raw cow milk and their impacts on the quality and safety of milk products. Food Microbiology, 72, 153–162. https://doi.org/10.1016/j.fm.2017.09.015
Wang, Y., Gan, N., Li, T., Cao, Y., Hu, F., & Chen, Y. (2016). A novel aptamer–quantum dot fluorescence probe for specific detection of antibiotic residues in milk. Analytical Methods, 8(15), 3006–3013. https://doi.org/10.1039/c6ay00571e
World Health Organization (WHO). (2010). Report of the WHO Expert Committee on Food Additives: 72nd meeting. https://www.who.int/foodsafety/publications/chemical-foods/food-additives-report/en/
World Organisation for Animal Health (OIE). (2016). OIE guidelines on the responsible use of antibiotics. https://www.oie.int/en/document/oie-guidelines-on-the-responsible-use-of-antibiotics/
Xiu, Y., Luo, R., Han, B., Liu, L., & Wang, H. (2020). Construction of Co@C hybrid nanostructure: Electrochemical biosensor for detection of penicillin sodium in milk. Food Analytical Methods, 13, 617–628. https://doi.org/10.1007/s11483-019-00329-5
Zdolec, N., Dobranić, V., Butković, I., Koturić, A., Filipović, I., & Medvid, V. (2016). Antimicrobial susceptibility of milk bacteria from healthy and drug-treated cow udder. Veterinarski Arhiv, 86(2), 163–172.
Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782. https://doi.org/10.1021/acs.est.5b00721
Zhang, Z., Wang, H., Zhang, Y., & Wei, D. (2018). Current advances in immunoassays for detection of small molecules: From simple to simply amazing. Biosensors and Bioelectronics, 106, 222–237. https://doi.org/10.1016/j.bios.2018.01.063