Main Article Content

Abstract

This research examines the amount of energy released while converting the core of a neutron star into strange quark matter. This process plays a significant role in understanding dense matter's physics and neutron stars' behavior. The research method is library-based, utilizing reputable articles and books in nuclear physics and astrophysics. The study's findings indicate that a considerable amount of energy is released in this process, which can influence the evolution of stars and lead to phenomena such as the formation of quark stars. The importance of this research lies in providing new insights into the structure of dense matter and how it changes under extreme pressure. In conclusion, it is found that this process can be one of the key factors in gaining a more precise understanding of the evolution and death of neutron stars, serving as an important indicator in astrophysical studies.

Keywords

Bag Constant (B) Bag Model Linear Confinement Potential Kinetic Energy Total Energy

Article Details

How to Cite
Hashimi, S. H. (2024). Calculation of the Total Energy of the Neutron Star Core in the Process of Transformation into Strange Quark Matter. Journal of Natural Sciences – Kabul University, 7(2), 93–109. https://doi.org/10.62810/jns.v7i2.30

References

  1. Glendenning, N. K., & Glendenning, N. K. (1997). General Relativity. Compact Stars: Nuclear Physics, Particle Physics and General Relativity, 7-54
  2. Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. (2008). Color superconductivity in dense quark matter. Reviews of Modern Physics, 80(4), 1455-1515. DOI:https://doi.org/10.1103/RevModPhys.80.1455
  3. Bombaci, I., & Datta, B. (2000). Conversion of neutron stars to strange stars as the central engine of gamma-ray bursts. The Astrophysical Journal, 530(2), L69.
  4. Drake, J. J., Marshall, H. L., Dreizler, S., Freeman, P. E., Fruscione, A., Juda, M., ... & Werner, K. (2002). Is RX J1856. 5–3754 a quark star?. The Astrophysical Journal, 572(2), 996. DOI 10.1086/340368
  5. Heinz, U., & Jacob, M. (2000). Evidence for a new state of matter: An assessment of the results from the CERN lead beam programme. arXiv preprint nucl-th/0002042.
  6. https://doi.org/10.48550/arXiv.nucl-th/0002042
  7. Ivanenko, D. D., & Kurdgelaidze, D. F. (1965). Hypothesis concerning quark stars. Astrophysics, 1, 251-252. DOI: 10.1007/BF01042830
  8. Cheng, K. S., Dai, Z. G., & Lu, T. (1998). Strange stars and related astrophysical phenomena. International Journal of Modern Physics D, 7(02), 139-176. https://doi.org/10.1142/S0218271898000139
  9. Madsen, J. (2007). Physics and astrophysics of strange quark matter.
  10. In Hadrons in Dense Matter and Hadrosynthesis: Proceedings of the Eleventh Chris Engelbrecht Summer School Held in Cape Town, South Africa, 4–13 February 1998 (pp. 162-203). Berlin, Heidelberg: Springer Berlin Heidelberg.
  11. https://doi.org/10.48550/arXiv.astro-ph/9809032
  12. Sahu, P. K. (1995). Study of the properties of dense nuclear matter and application to some astrophysical systems. arXiv preprint hep-ph/9504367.
  13. https://doi.org/10.48550/arXiv.hep-ph/9504367
  14. Bhattacharyya, A., Ghosh, S. K., Joarder, P. S., Mallick, R., & Raha, S. (2006). Conversion of a neutron star to a strange star: A two-step process. Physical Review C—Nuclear Physics, 74(6), 065804. https://doi.org/10.1103/PhysRevC.74.065804
  15. Weber, F. (2005). Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54(1), 193-288. https://doi.org/10.1016/j.ppnp.2004.07.001
  16. Lattimer, J. M., & Prakash, M. (2004). The physics of neutron stars. Science, 304(5670), 536-542.
  17. https://doi.org/10.1126/science.1090720
  18. Weber, F., Hamil, O., Mimura, K., & Negreiros, R. (2010). From crust to core: A brief review of quark matter in neutron stars. International Journal of Modern Physics D, 19(08n10), 1427-1436. https://doi.org/10.1142/S0218271810017329
  19. Farhi, E., & Jaffe, R. L. (1984). Strange matter. Physical Review D, 30(11), 2379. https://doi.org/10.1103/PhysRevD.30.2379
  20. Shapiro, S. L., & Teukolsky, S. A. (2008). Black holes, white dwarfs, and neutron stars: The physics of compact objects. John Wiley & Sons. DOI: 10.4236/jhepgc.2017.33040
  21. Seymour, P. A. H. (1984). Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. DOI 10.1088/0031-9112/35/2/029
  22. Weber, F., Meixner, M., Negreiros, R. P., & Malheiro, M. (2007). Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state. International Journal of Modern Physics E, 16(04), 1165-1180. https://doi.org/10.1142/S0218301307006599
  23. Xiaoping, Z., Nana, P., Shuhua, Y., Xuewen, L., & Miao, K. (2003). An Astronomical Evidence of Existence of Quark Matter and the Prediction for Submillisecond Pulsars. arXiv preprint astro-ph/0310523.
  24. https://doi.org/10.48550/arXiv.astro-ph/0310523
  25. Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. (2008). Color superconductivity in dense quark matter. Reviews of Modern Physics, 80(4), 1455-1515. https://doi.org/10.1103/RevModPhys.80.1455
  26. Weber, F. (2005). Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54(1), 193-288. https://doi.org/10.1016/j.ppnp.2004.07.001
  27. Loffredo, E., Perego, A., Logoteta, D., & Branchesi, M. (2023). Muons in the aftermath of neutron star mergers and their impact on trapped neutrinos. Astronomy & Astrophysics, 672, A124.
  28. https://doi.org/10.1051/0004-6361/202244927
  29. Logoteta, D., Perego, A., & Bombaci, I. (2021). Microscopic equation of state of hot nuclear matter for numerical relativity simulations. Astronomy & Astrophysics, 646, A55.
  30. https://doi.org/10.1051/0004-6361/202039457
  31. Alford, M., Braby, M., Paris, M., & Reddy, S. (2005). Hybrid stars that masquerade as neutron stars. The Astrophysical Journal, 629(2), 969. DOI 10.1086/430902
  32. Glendenning, N. K. (2012). Compact stars: Nuclear physics, particle physics and general relativity. Springer Science & Business Media.
  33. Benvenuto, O. G., & Horvath, J. E. (1989). Evidence for strange matter in supernovae?. Physical review letters, 63(7), 716. https://doi.org/10.1103/PhysRevLett.63.716
  34. Lai, D., & Shapiro, S. L. (1991). Cold equation of state in a strong magnetic field-Effects of inverse beta-decay. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 383, Dec. 20, 1991, p. 745-751., 383, 745-751.10.1086/170831