Main Article Content
Abstract
This research examines the amount of energy released while converting the core of a neutron star into strange quark matter. This process plays a significant role in understanding dense matter's physics and neutron stars' behavior. The research method is library-based, utilizing reputable articles and books in nuclear physics and astrophysics. The study's findings indicate that a considerable amount of energy is released in this process, which can influence the evolution of stars and lead to phenomena such as the formation of quark stars. The importance of this research lies in providing new insights into the structure of dense matter and how it changes under extreme pressure. In conclusion, it is found that this process can be one of the key factors in gaining a more precise understanding of the evolution and death of neutron stars, serving as an important indicator in astrophysical studies.
Keywords
Article Details
Copyright (c) 2024 Copyright Reserved for Kabul University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Glendenning, N. K., & Glendenning, N. K. (1997). General Relativity. Compact Stars: Nuclear Physics, Particle Physics and General Relativity, 7-54
- Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. (2008). Color superconductivity in dense quark matter. Reviews of Modern Physics, 80(4), 1455-1515. DOI:https://doi.org/10.1103/RevModPhys.80.1455
- Bombaci, I., & Datta, B. (2000). Conversion of neutron stars to strange stars as the central engine of gamma-ray bursts. The Astrophysical Journal, 530(2), L69.
- Drake, J. J., Marshall, H. L., Dreizler, S., Freeman, P. E., Fruscione, A., Juda, M., ... & Werner, K. (2002). Is RX J1856. 5–3754 a quark star?. The Astrophysical Journal, 572(2), 996. DOI 10.1086/340368
- Heinz, U., & Jacob, M. (2000). Evidence for a new state of matter: An assessment of the results from the CERN lead beam programme. arXiv preprint nucl-th/0002042.
- https://doi.org/10.48550/arXiv.nucl-th/0002042
- Ivanenko, D. D., & Kurdgelaidze, D. F. (1965). Hypothesis concerning quark stars. Astrophysics, 1, 251-252. DOI: 10.1007/BF01042830
- Cheng, K. S., Dai, Z. G., & Lu, T. (1998). Strange stars and related astrophysical phenomena. International Journal of Modern Physics D, 7(02), 139-176. https://doi.org/10.1142/S0218271898000139
- Madsen, J. (2007). Physics and astrophysics of strange quark matter.
- In Hadrons in Dense Matter and Hadrosynthesis: Proceedings of the Eleventh Chris Engelbrecht Summer School Held in Cape Town, South Africa, 4–13 February 1998 (pp. 162-203). Berlin, Heidelberg: Springer Berlin Heidelberg.
- https://doi.org/10.48550/arXiv.astro-ph/9809032
- Sahu, P. K. (1995). Study of the properties of dense nuclear matter and application to some astrophysical systems. arXiv preprint hep-ph/9504367.
- https://doi.org/10.48550/arXiv.hep-ph/9504367
- Bhattacharyya, A., Ghosh, S. K., Joarder, P. S., Mallick, R., & Raha, S. (2006). Conversion of a neutron star to a strange star: A two-step process. Physical Review C—Nuclear Physics, 74(6), 065804. https://doi.org/10.1103/PhysRevC.74.065804
- Weber, F. (2005). Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54(1), 193-288. https://doi.org/10.1016/j.ppnp.2004.07.001
- Lattimer, J. M., & Prakash, M. (2004). The physics of neutron stars. Science, 304(5670), 536-542.
- https://doi.org/10.1126/science.1090720
- Weber, F., Hamil, O., Mimura, K., & Negreiros, R. (2010). From crust to core: A brief review of quark matter in neutron stars. International Journal of Modern Physics D, 19(08n10), 1427-1436. https://doi.org/10.1142/S0218271810017329
- Farhi, E., & Jaffe, R. L. (1984). Strange matter. Physical Review D, 30(11), 2379. https://doi.org/10.1103/PhysRevD.30.2379
- Shapiro, S. L., & Teukolsky, S. A. (2008). Black holes, white dwarfs, and neutron stars: The physics of compact objects. John Wiley & Sons. DOI: 10.4236/jhepgc.2017.33040
- Seymour, P. A. H. (1984). Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. DOI 10.1088/0031-9112/35/2/029
- Weber, F., Meixner, M., Negreiros, R. P., & Malheiro, M. (2007). Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state. International Journal of Modern Physics E, 16(04), 1165-1180. https://doi.org/10.1142/S0218301307006599
- Xiaoping, Z., Nana, P., Shuhua, Y., Xuewen, L., & Miao, K. (2003). An Astronomical Evidence of Existence of Quark Matter and the Prediction for Submillisecond Pulsars. arXiv preprint astro-ph/0310523.
- https://doi.org/10.48550/arXiv.astro-ph/0310523
- Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. (2008). Color superconductivity in dense quark matter. Reviews of Modern Physics, 80(4), 1455-1515. https://doi.org/10.1103/RevModPhys.80.1455
- Weber, F. (2005). Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54(1), 193-288. https://doi.org/10.1016/j.ppnp.2004.07.001
- Loffredo, E., Perego, A., Logoteta, D., & Branchesi, M. (2023). Muons in the aftermath of neutron star mergers and their impact on trapped neutrinos. Astronomy & Astrophysics, 672, A124.
- https://doi.org/10.1051/0004-6361/202244927
- Logoteta, D., Perego, A., & Bombaci, I. (2021). Microscopic equation of state of hot nuclear matter for numerical relativity simulations. Astronomy & Astrophysics, 646, A55.
- https://doi.org/10.1051/0004-6361/202039457
- Alford, M., Braby, M., Paris, M., & Reddy, S. (2005). Hybrid stars that masquerade as neutron stars. The Astrophysical Journal, 629(2), 969. DOI 10.1086/430902
- Glendenning, N. K. (2012). Compact stars: Nuclear physics, particle physics and general relativity. Springer Science & Business Media.
- Benvenuto, O. G., & Horvath, J. E. (1989). Evidence for strange matter in supernovae?. Physical review letters, 63(7), 716. https://doi.org/10.1103/PhysRevLett.63.716
- Lai, D., & Shapiro, S. L. (1991). Cold equation of state in a strong magnetic field-Effects of inverse beta-decay. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 383, Dec. 20, 1991, p. 745-751., 383, 745-751.10.1086/170831
References
Glendenning, N. K., & Glendenning, N. K. (1997). General Relativity. Compact Stars: Nuclear Physics, Particle Physics and General Relativity, 7-54
Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. (2008). Color superconductivity in dense quark matter. Reviews of Modern Physics, 80(4), 1455-1515. DOI:https://doi.org/10.1103/RevModPhys.80.1455
Bombaci, I., & Datta, B. (2000). Conversion of neutron stars to strange stars as the central engine of gamma-ray bursts. The Astrophysical Journal, 530(2), L69.
Drake, J. J., Marshall, H. L., Dreizler, S., Freeman, P. E., Fruscione, A., Juda, M., ... & Werner, K. (2002). Is RX J1856. 5–3754 a quark star?. The Astrophysical Journal, 572(2), 996. DOI 10.1086/340368
Heinz, U., & Jacob, M. (2000). Evidence for a new state of matter: An assessment of the results from the CERN lead beam programme. arXiv preprint nucl-th/0002042.
https://doi.org/10.48550/arXiv.nucl-th/0002042
Ivanenko, D. D., & Kurdgelaidze, D. F. (1965). Hypothesis concerning quark stars. Astrophysics, 1, 251-252. DOI: 10.1007/BF01042830
Cheng, K. S., Dai, Z. G., & Lu, T. (1998). Strange stars and related astrophysical phenomena. International Journal of Modern Physics D, 7(02), 139-176. https://doi.org/10.1142/S0218271898000139
Madsen, J. (2007). Physics and astrophysics of strange quark matter.
In Hadrons in Dense Matter and Hadrosynthesis: Proceedings of the Eleventh Chris Engelbrecht Summer School Held in Cape Town, South Africa, 4–13 February 1998 (pp. 162-203). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.48550/arXiv.astro-ph/9809032
Sahu, P. K. (1995). Study of the properties of dense nuclear matter and application to some astrophysical systems. arXiv preprint hep-ph/9504367.
https://doi.org/10.48550/arXiv.hep-ph/9504367
Bhattacharyya, A., Ghosh, S. K., Joarder, P. S., Mallick, R., & Raha, S. (2006). Conversion of a neutron star to a strange star: A two-step process. Physical Review C—Nuclear Physics, 74(6), 065804. https://doi.org/10.1103/PhysRevC.74.065804
Weber, F. (2005). Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54(1), 193-288. https://doi.org/10.1016/j.ppnp.2004.07.001
Lattimer, J. M., & Prakash, M. (2004). The physics of neutron stars. Science, 304(5670), 536-542.
https://doi.org/10.1126/science.1090720
Weber, F., Hamil, O., Mimura, K., & Negreiros, R. (2010). From crust to core: A brief review of quark matter in neutron stars. International Journal of Modern Physics D, 19(08n10), 1427-1436. https://doi.org/10.1142/S0218271810017329
Farhi, E., & Jaffe, R. L. (1984). Strange matter. Physical Review D, 30(11), 2379. https://doi.org/10.1103/PhysRevD.30.2379
Shapiro, S. L., & Teukolsky, S. A. (2008). Black holes, white dwarfs, and neutron stars: The physics of compact objects. John Wiley & Sons. DOI: 10.4236/jhepgc.2017.33040
Seymour, P. A. H. (1984). Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. DOI 10.1088/0031-9112/35/2/029
Weber, F., Meixner, M., Negreiros, R. P., & Malheiro, M. (2007). Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state. International Journal of Modern Physics E, 16(04), 1165-1180. https://doi.org/10.1142/S0218301307006599
Xiaoping, Z., Nana, P., Shuhua, Y., Xuewen, L., & Miao, K. (2003). An Astronomical Evidence of Existence of Quark Matter and the Prediction for Submillisecond Pulsars. arXiv preprint astro-ph/0310523.
https://doi.org/10.48550/arXiv.astro-ph/0310523
Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. (2008). Color superconductivity in dense quark matter. Reviews of Modern Physics, 80(4), 1455-1515. https://doi.org/10.1103/RevModPhys.80.1455
Weber, F. (2005). Strange quark matter and compact stars. Progress in Particle and Nuclear Physics, 54(1), 193-288. https://doi.org/10.1016/j.ppnp.2004.07.001
Loffredo, E., Perego, A., Logoteta, D., & Branchesi, M. (2023). Muons in the aftermath of neutron star mergers and their impact on trapped neutrinos. Astronomy & Astrophysics, 672, A124.
https://doi.org/10.1051/0004-6361/202244927
Logoteta, D., Perego, A., & Bombaci, I. (2021). Microscopic equation of state of hot nuclear matter for numerical relativity simulations. Astronomy & Astrophysics, 646, A55.
https://doi.org/10.1051/0004-6361/202039457
Alford, M., Braby, M., Paris, M., & Reddy, S. (2005). Hybrid stars that masquerade as neutron stars. The Astrophysical Journal, 629(2), 969. DOI 10.1086/430902
Glendenning, N. K. (2012). Compact stars: Nuclear physics, particle physics and general relativity. Springer Science & Business Media.
Benvenuto, O. G., & Horvath, J. E. (1989). Evidence for strange matter in supernovae?. Physical review letters, 63(7), 716. https://doi.org/10.1103/PhysRevLett.63.716
Lai, D., & Shapiro, S. L. (1991). Cold equation of state in a strong magnetic field-Effects of inverse beta-decay. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 383, Dec. 20, 1991, p. 745-751., 383, 745-751.10.1086/170831