Main Article Content

Abstract

Carbon monoxide (CO) is an odorless, colorless, tasteless, and highly toxic gas. Undetectable by human senses, CO has long been regarded as a hazardous threat. It is produced during the incomplete combustion of hydrocarbon fuels and binds to hemoglobin (Hb) 200–300 times more readily than oxygen. CO penetrates the alveolar epithelium into lung capillaries, where it forms carboxyhemoglobin (COHb) by binding to Hb in red blood cells. The most recognized pathophysiological mechanism of acute CO poisoning is hypoxia, caused by impaired oxygen transfer due to COHb formation. CO poisoning results in severe damage to the brain and cardiac muscles. A distinguishing pathological feature of CO toxicity is bilateral lesions in the globus pallidus.

Keywords

Carbon monoxide Cat Dog Macroscopic Changes Microscopic Changes Toxicity

Article Details

How to Cite
Sangary, M. . (2025). A Review of Carbon Monoxide Poisoning and Its Pathological Changes in Dogs and Cats. Journal of Natural Sciences – Kabul University, 5(2), 227–243. https://doi.org/10.62810/jns.v5i2.280

References

  1. Borron SW, Bebarta VS. Asphyxiants. Emerg Med Clin North Am [Internet]. 2015, 33(1), PP 89–115. Available from: https://www.emed.theclinics.com/article/S0733-8627(14)00084-4/fulltext
  2. Levy RJ. Carbon monoxide and anesthesia-induced neurotoxicity. Neurotoxicol Teratol [Internet]. 2017;1(6), PP 50–8. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0892036216300794
  3. McEwen BJ. Strangulation, Suffocation, and Asphyxia. In: Brooks JW, editor. Veterinary Forensic Pathology [Internet]. 1st ed. Springer Nature; 2018, PP 139. Available from: https://www.pdfdrive.com/veterinary-forensic-pathology-volume-1-e187410357.html
  4. Sykes OT, Walker E. The neurotoxicology of carbon monoxide - Historical perspective and review. Cortex [Internet]. 2016;74, PP .440–8. Available from: http://dx.doi.org/10.1016/j.cortex.2015.07.033
  5. Prockop LD, Chichkova RI. Carbon monoxide intoxication: An updated review. J Neurol Sci. 2007;262(1–2), PP 122–30.
  6. Rose JJ, Wang L, Xu Q, McTiernan CF, Shiva S, Tejero J, et al. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. Am J Respir Crit Care Med [Internet]. 2017;195(5), PP 596–606. Available from: https://www.atsjournals.org/doi/full/10.1164/rccm.201606-1275CI
  7. Ernst A, D. Zibrak J. C ARBON M ONOXIDE P OISONING A. N Engl J Med [Internet]. 1998;339(22), PP 1603–8. Available from: https://www.nejm.org/doi/full/10.1056/NEJM199811263392206
  8. Huzar TF, George T, Cross JM. Carbon monoxide and cyanide toxicity: Etiology, pathophysiology and treatment in inhalation injury. Expert Rev Respir Med [Internet]. 2013;7(2), PP 159–70. Available from: https://www.tandfonline.com/doi/abs/10.1586/ers.13.9
  9. Gorman D, Drewry A, Huang YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology [Internet]. 2003;187(1), PP 25–38. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0300483X03000052
  10. Kent M, Creevy KE, DeLahunta A. Clinical and neuropathological findings of acute carbon monoxide toxicity in Chihuahuas following smoke inhalation. J Am Anim Hosp Assoc [Internet]. 2010;46(4), PP 259–64. Available from: https://meridian.allenpress.com/jaaha/article-abstract/46/4/259/176625/Clinical-and-Neuropathological-Findings-of-Acute
  11. Chiew AL, Buckley NA. Carbon monoxide poisoning in the 21st century. Crit Care [Internet]. 2014;18(2), PP 1–8. Available from: https://link.springer.com/article/10.1186/cc13846
  12. Sekiya K, Nishihara T, Abe N, Konishi A, Nandate H, Hamada T, et al. Carbon monoxide poisoning–induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia–induced brain damage. Brain Res [Internet]. 2019;1710(December 2018), PP 22–32. Available from: https://doi.org/10.1016/j.brainres.2018.12.027
  13. Gözübüyük AA. Corbon monoxide intoxication epidemiology, pathophsiology, clinical evaluation and treatment during childhood, in newborn and fetus. North Clin Istanbul [Internet]. 2017;4(1), PP 100–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530151/
  14. Weaver LK. Carbon Monoxide Poisoning. N Engl J Med [Internet]. 2009;(360), PP 1217–25. Available from: https://www.nejm.org/doi/full/10.1056/nejmcp0808891
  15. Roderique JD, Josef CS, Feldman MJ, Spiess BD. A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement. Toxicology [Internet]. 2015;334, PP 45–58. Available from: http://dx.doi.org/10.1016/j.tox.2015.05.004
  16. Haldane J. THE RELATION OF THE ACTION OF CARBONIC OXIDE TO OXYGEN TENSION. J Physiol [Internet]. 1895;18(3), PP 201. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1514632/
  17. Huang YQ, Peng ZR, Huang FL, Yang AL. Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regen Res [Internet]. 2020;15(12), PP 2286–95. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749483/
  18. Henz S, Maeder M. Prospective study of accidental carbon monoxide poisoning in 38 Swiss soldiers. Swiss Med Wkly [Internet]. 2005;135(27–28), PP 398–406. Available from: https://www.researchgate.net/profile/Samuel-Henz/publication/7546545_Prospective_study_of_accidental_carbon_monoxide_poisoning_in_38_Swiss_soldiers/links/09e415093e248700b3000000/Prospective-study-of-accidental-carbon-monoxide-poisoning-in-38-Swiss-soldie
  19. Berent AC, Todd J, Sergeeff J, Powell LL. Carbon monoxide toxicity: A case series. J Vet Emerg Crit Care [Internet]. 2005;15(2), PP 128–35. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-4431.2005.00140.x
  20. Goldbaum LR, Orellano T, Dergal E. Mechanism of the toxic action of carbon monoxide. Ann Clin Lab Sci [Internet]. 1976;6(4), PP 372–6. Available from: http://www.annclinlabsci.org/content/6/4/372.short
  21. Peters BP, Weissman FG, Gill MA. PATHOPHYSIOLOGY AND TREATMENT OF CARBON MONOXIDE POISONING. Clin Toxicol [Internet]. 1994;32(6), PP 613–29. Available from: https://www.tandfonline.com/doi/abs/10.3109/15563659409017973
  22. Raub JA, Benignus VA. Carbon monoxide and the nervous system. Neurosci Biobehav Rev [Internet]. 2002;26(8), PP 925–40. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0149763403000022
  23. Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol [Internet]. 1997;147(1), PP 103–14. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0014488697965845
  24. Thom SR. Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. J Appl Physiol [Internet]. 1992;73(4), PP1584–9. Available from: https://journals.physiology.org/doi/abs/10.1152/jappl.1992.73.4.1584
  25. Coburn RF, Forster RE, Kane PB. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J Clin Invest [Internet]. 1965;44(11), PP 1899–910. Available from: https://dm5migu4zj3pb.cloudfront.net/manuscripts/105000/105296/JCI65105296.pdf
  26. Leary S, Underwood W, Anthony R, Cartner S. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition [Internet]. American Veterinary Medical Association. 2013. 98 p. Available from: https://www.avma.org/kb/policies/documents/euthanasia.pdf
  27. Ginsberg MD. Experimental Carbon Monoxide Encephalopathy in the Primate. Arch Neurol [Internet]. 1974;30(3), PP 202. Available from: https://jamanetwork.com/journals/jamaneurology/article-abstract/572760
  28. Mariani CL. Full recovery following delayed neurologic signs after smoke inhalation in a dog. J Vet Emerg Crit Care [Internet]. 2003;13(4), PP 235–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1534-6935.2003.00101.x
  29. Song SY, Okeda R, Funata N, Higashino F. An experimental study of the pathogenesis of the selective lesion of the globus pallidus in acute carbon monoxide poisoning in cats - With special reference to the chronologic change in the cerebral local blood flow. Acta Neuropathol [Internet]. 1983;61(3–4), PP 232–8. Available from: https://link.springer.com/article/10.1007/BF00691991
  30. Beppu T. The role of MR imaging in assessment of brain damage from carbon monoxide poisoning: A review of the literature. Am J Neuroradiol [Internet]. 2014;35(4), PP 625–31. Available from: http://www.ajnr.org/content/35/4/625.short
  31. Sobhakumari A, Poppenga RH, Pesavento JB, Uzal FA. Pathology of carbon monoxide poisoning in two cats. BMC Vet Res [Internet]. 2018;14(1), PP 1–6. Available from: https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-018-1385-4
  32. Hampson NB. Stability of carboxyhemoglobin in stored and mailed blood samples. Am J Emerg Med [Internet]. 2008;26(2), PP 191–5. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0735675707003099