Main Article Content
Abstract
Afghanistan is one of the most vulnerable countries to climate change. The past and projected future (up to the year 2100) climate change in Afghanistan has been analyzed through regression analyses. The salient climate variables were studied under different scenarios using the updated version of global climate models (CMIP6). The average temperature in Afghanistan has risen by 1.827°C since 1960, and precipitation has decreased during the time of study in the country, but not significantly; however, the precipitation is heterogeneous across the country. The future projection of the maximum temperature will vary from 0.75 to 5.91 °C, and the minimum temperature increase will vary from 0.51 to 5.64°C under different scenarios. The precipitation shows a very uncertain status in the given scenarios. Unless action is taken, climate change will pose even bigger threats to crop production and food security in Afghanistan. Adaptation measures are required to sustain agricultural productivity, reduce vulnerability, and enhance the resilience of the agricultural system to climate change. Adaptation to climate change also has social, economic, and political dimensions, which require significant investments.
Keywords
Article Details
Copyright (c) 2024 Reserved for Kabul University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ahmed, M., Hayat, R., Ahmad, M. et al. Impact of Climate Change on Dryland Agricultural Systems: A Review of Current Status, Potentials, and Further Work Need. Int. J. Plant Prod. 16, 341–363 (2022).
- Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A. J., Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. N. (2017). Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate, 5(2).
- Aliyar Q and Esmailnejad M (2022). Assessment of the change of trend in precipitation over Afghanistan in 1979-2019. Quarterly Journal of the Hungarian Meteorological Service. Vol. 126, No. 2, 185–201
- Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., Rahut, D. B., & Jat, M. L. (2019). Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environment, Development and Sustainability. doi:10.1007/s10668-019-00414-4.
- Asseng, S., Martre, P., Maiorano, A., Rotter, R. P., et.al, (2019). Climate change impact and adaptation for wheat protein. Global Change Biology, 25(1), 155–173. https:// doi. org/ 10. 1111
- Banerjee, R. R. (2014). Farmers’ perception of climate change, impact and adaptation strategies: a case study of four villages in the semi-arid regions of India. Natural Hazards, 75(3), 2829–2845.
- Betts RA, Collins M, Hemming DL, Jones CD, Lowe JA, Sanderson MG (2011) When could global warming reach 4 °C? Phil Trans R Soc A 369:67–84. doi:10.1098/rsta.2010.0292
- Bhattacharyya, R., Das, T., Sudhishri, S., Dudwal, B., Sharma, A., Bhatia, A., et al. (2015). Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice–wheat cropping system in the western Indo-Gangetic Plains. European Journal of Agronomy, 70, 11–21.
- Bove T (2021) Why We Should Care About the Taliban’s Environmental Policies. https://earth.org.
- Cairns, J. E., & Prasanna, B. (2018). Developing and deploying climate-resilient maize varieties in the developing world. Current Opinion in Plant Biology, 45, 226–230.
- Cannarozzo, M., Noto, L.V., and Viola, F. 2006: Spatial distribution of rainfall trends in Sicily (1921– 2000). Phys. Chem. Earth, 31, 1201–1211. https://doi.org/10.1016/j.pce.2006.03.022.
- Collins M, An, S, Cai W, Ganachaud A, Guilyardi E, Jin F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience 3. doi:10.1038/NGEO868.
- Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919.
- FAO (2012) The state of food insecurity in the world: economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome http://www.fao.org/i3027e.pdf.
- Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effet of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci 200:143–155. https://doi.org/10.1111/jac.12045
- Gautam, S., Schreinemachers, P., Uddin, M. N., & Srinivasan, R. (2017). Impact of training vegetable farmers in Bangladesh in integrated pest management (IPM). Crop Protection, 102, 161–169.
- Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20120273.
- Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D et al (2011) Climate impact on agriculture: implications for crop production. Agron J 103:351–370.
- IPCC (2007) Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY.
- IPCC (2018) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Edited by V. Masson-Delmotte, et al. Geneva: International Panel on Climate Change. https://www.ipcc.ch/sr15/.
- Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1–15.
- Kassaye, A. Y., Shao, G., Wang, X., Shifaw, E., & Wu, S. (2021). Impact of climate change on the staple food crops yield in Ethiopia. Theor Appl Climatol, 145(1-2), 327–343.
- Kheiri, M., Soufizadeh, S., Ghaffari, A., & Eskandari, A. (2017). Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141(4), 703–717.
- Lal, M. (2010). Implications of climate change in sustained agricultural productivity in South Asia. Regional Environmental Change, 11(S1), 79–94. doi:10.1007/s10113-010-0166-9.
- Lasco, R. D., Habito, C. M. D., Delfino, R. J. P., Pulhin, F. B., & Concepcion, R. N. (2011). Climate change adaptation for smallholder farmers in Southeast Asia (65 p). Philippines: World Agroforestry Centre.
- Lassa, J. A., Lai, A. Y.-H., & Goh, T. (2015). Climate extremes: an observation and projection of its impacts on food production in ASEAN. Natural Hazards, 84(S1), 19–33.
- Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience, 61, 183–193.
- Lioubimtseva, E., & Henebry, G. M. (2009). Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11), 963–977.
- Madhukar, A., Dashora, K., & Kumar, V. (2021). Climate Trends in Temperature and Water Variables during Wheat Growing Season and Impact on Yield. Environmental Processes, 8(3), 1047–1072. doi:10.1007/s40710-021-00526-y.
- Mirzabaev, A. (2018). Improving the Resilience of Central Asian Agriculture to Weather Variability and Climate Change. In: Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G. (eds) Climate Smart Agriculture . Natural Resource Management and Policy, vol 52
- NASA (2019) Global land-ocean temperature index. National aeronautics and space administration. http://data.giss.nasa.gov/giste mp.
- Naylor RL, Battisti DS, Vimont DJ, Falcon WP, Marshall BB (2007) Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proc Natl Acad Sci USA 104(19):7752–7757.
- Ochieng, J., Kirimi, L., Ochieng, D. O., Njagi, T., Mathenge, M., Gitau, R., & Ayieko, M. (2020). Managing climate risk through crop diversification in rural Kenya. Climatic Change.
- Omerkhil, N., Chand, T., Valente, D., (2020). Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan. Ecol Indicators, 110(June 2019).
- Orlov A, Daloz AS, Sillmann J et al (2021) Global economic responses to heat stress impacts on worker productivity in crop production. Econ Dis Cli Change 5:367–390.
- Parker DE (2004) Climate: large-scale warming is not urban. Nature 432(7015):290.
- Prabhakar, S. V. R. K., & Shaw, R. (2007). Climate change adaptation implications for drought risk mitigation: a perspective for India. Climatic Change, 88(2), 113–130.
- Reid, H., Alam, M., Berger, R., Cannon, T., & Milligan, A. (2009). Community-based adaptation to climate change, participatory learning and action. London: International Institute for Environment and Development.
- Reyer, C. P. ., Otto, I. M., Adams, S., Albrecht, T, M. Stagl, J. (2015). Climate change impacts in Central Asia and their implications for development. Environmental Change, 17(6), 1639–1650.
- Safi, L. (2023). Review of Afghanistan’s development pattern from 2001 to 2021: a relative lacked sustainability, inclusiveness, and prosperity. J. Soc. Econ. Dev.. https://doi.org/10.1007/s40847-023-00268-7.
- Safi, L. S., Mavi, G. S., Hariderjeet Kaur, H. K., Puja Srivastava, P. S., Achla Sharma, A. S., Sohu, V. S., & Bains, N. S. (2018). High yielding wheat lines carrying superior grain and processing quality introgressed from tall traditional cultivars. Electronic Journal of Plant Breeding, 9 (3):863-872.
- Safi, L., Mujeeb, M., Sahak, K. et al. (2024). Climate change impacts and threats on basic livelihood resources, food security and social stability in Afghanistan. GeoJournal 89, 85. https://doi.org/10.1007/s10708-024-11077-8.
- Safi, L.,Singh, R., and Abraham T. (2017a). Analysis of Agro-Morphological Characters in Wheat (Triticum aestivum L.) Genotypes for Yield and Yield Components. Int.J.Curr.Microbiol.App.Sci. 6(9): 578-585.
- Safi, L.,Singh, R., and Abraham T. (2017b). Assessment of heritability and genetic parameters in wheat (Triticum aestivum L.) based on agronomic and morphological traits. Journal of Pharmacognosy and Phytochemistry 2017; 6(5): 18-21
- Sediqi, M. N., Shiru, M. S., Nashwan, M. S., Ali, R., Abubaker, S., Wang, X., Ahmed, K., (2019). Spatio-temporal pattern in the changes in availability and sustainability of water resources in Afghanistan. Sustainability , 11(20). https:// doi. org/ 10. 3390/ su11205836.
- Sediqi, M.N., Hendrawan, V.S.A. & Komori, D. Climate projections over different climatic regions of Afghanistan undershared socioeconomic scenarios. Theor Appl Climatol 149, 511–524 (2022).
- Singh, R., Singh, H., & Raghubanshi, A. S. Challenges and opportunities for agricultural sustainability in changing climate scenarios: a perspective on Indian agriculture. (2019) Tropical Ecology.
- Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation Strategies for Global Change, 7, 85–114.
- Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31), 41576–41595.
- Verchot, L. V., Van Noordwijk, M., Kandji, et.al, (2007). Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change, 12(5), 901–918.
- Von Grebmer, KJ Bernstein, C Delgado, D Smith et al. (2021) Global Hunger Index 2021: Hunger and Food Systems in Conflict Settings. Bonn: Welthungerhilfe; and Dublin: Concern Worldwide.
- Waldron, A., Miller, D. C., Redding, D., Mooers, A., Kuhn, T. S., Nibbelink, N., et al. (2017). Reductions in global biodiversity loss predicted from conservation spending. Nature, 551, 364.
- Wu, W., Ma, B., & Uphoff, N. (2015). A review of the system of rice intensification in China. Plant and Soil, 393(1–2), 361–381.
- Yau S, Nimah M, Farran M (2011) Early sowing and irrigation to increase barley yields and water use efficiency in Mediterranean conditions. Agric Water Manag 98:1776–1781.
References
Ahmed, M., Hayat, R., Ahmad, M. et al. Impact of Climate Change on Dryland Agricultural Systems: A Review of Current Status, Potentials, and Further Work Need. Int. J. Plant Prod. 16, 341–363 (2022).
Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A. J., Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. N. (2017). Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate, 5(2).
Aliyar Q and Esmailnejad M (2022). Assessment of the change of trend in precipitation over Afghanistan in 1979-2019. Quarterly Journal of the Hungarian Meteorological Service. Vol. 126, No. 2, 185–201
Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., Rahut, D. B., & Jat, M. L. (2019). Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environment, Development and Sustainability. doi:10.1007/s10668-019-00414-4.
Asseng, S., Martre, P., Maiorano, A., Rotter, R. P., et.al, (2019). Climate change impact and adaptation for wheat protein. Global Change Biology, 25(1), 155–173. https:// doi. org/ 10. 1111
Banerjee, R. R. (2014). Farmers’ perception of climate change, impact and adaptation strategies: a case study of four villages in the semi-arid regions of India. Natural Hazards, 75(3), 2829–2845.
Betts RA, Collins M, Hemming DL, Jones CD, Lowe JA, Sanderson MG (2011) When could global warming reach 4 °C? Phil Trans R Soc A 369:67–84. doi:10.1098/rsta.2010.0292
Bhattacharyya, R., Das, T., Sudhishri, S., Dudwal, B., Sharma, A., Bhatia, A., et al. (2015). Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice–wheat cropping system in the western Indo-Gangetic Plains. European Journal of Agronomy, 70, 11–21.
Bove T (2021) Why We Should Care About the Taliban’s Environmental Policies. https://earth.org.
Cairns, J. E., & Prasanna, B. (2018). Developing and deploying climate-resilient maize varieties in the developing world. Current Opinion in Plant Biology, 45, 226–230.
Cannarozzo, M., Noto, L.V., and Viola, F. 2006: Spatial distribution of rainfall trends in Sicily (1921– 2000). Phys. Chem. Earth, 31, 1201–1211. https://doi.org/10.1016/j.pce.2006.03.022.
Collins M, An, S, Cai W, Ganachaud A, Guilyardi E, Jin F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience 3. doi:10.1038/NGEO868.
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919.
FAO (2012) The state of food insecurity in the world: economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome http://www.fao.org/i3027e.pdf.
Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effet of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci 200:143–155. https://doi.org/10.1111/jac.12045
Gautam, S., Schreinemachers, P., Uddin, M. N., & Srinivasan, R. (2017). Impact of training vegetable farmers in Bangladesh in integrated pest management (IPM). Crop Protection, 102, 161–169.
Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20120273.
Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D et al (2011) Climate impact on agriculture: implications for crop production. Agron J 103:351–370.
IPCC (2007) Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY.
IPCC (2018) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Edited by V. Masson-Delmotte, et al. Geneva: International Panel on Climate Change. https://www.ipcc.ch/sr15/.
Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1–15.
Kassaye, A. Y., Shao, G., Wang, X., Shifaw, E., & Wu, S. (2021). Impact of climate change on the staple food crops yield in Ethiopia. Theor Appl Climatol, 145(1-2), 327–343.
Kheiri, M., Soufizadeh, S., Ghaffari, A., & Eskandari, A. (2017). Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141(4), 703–717.
Lal, M. (2010). Implications of climate change in sustained agricultural productivity in South Asia. Regional Environmental Change, 11(S1), 79–94. doi:10.1007/s10113-010-0166-9.
Lasco, R. D., Habito, C. M. D., Delfino, R. J. P., Pulhin, F. B., & Concepcion, R. N. (2011). Climate change adaptation for smallholder farmers in Southeast Asia (65 p). Philippines: World Agroforestry Centre.
Lassa, J. A., Lai, A. Y.-H., & Goh, T. (2015). Climate extremes: an observation and projection of its impacts on food production in ASEAN. Natural Hazards, 84(S1), 19–33.
Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience, 61, 183–193.
Lioubimtseva, E., & Henebry, G. M. (2009). Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11), 963–977.
Madhukar, A., Dashora, K., & Kumar, V. (2021). Climate Trends in Temperature and Water Variables during Wheat Growing Season and Impact on Yield. Environmental Processes, 8(3), 1047–1072. doi:10.1007/s40710-021-00526-y.
Mirzabaev, A. (2018). Improving the Resilience of Central Asian Agriculture to Weather Variability and Climate Change. In: Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G. (eds) Climate Smart Agriculture . Natural Resource Management and Policy, vol 52
NASA (2019) Global land-ocean temperature index. National aeronautics and space administration. http://data.giss.nasa.gov/giste mp.
Naylor RL, Battisti DS, Vimont DJ, Falcon WP, Marshall BB (2007) Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proc Natl Acad Sci USA 104(19):7752–7757.
Ochieng, J., Kirimi, L., Ochieng, D. O., Njagi, T., Mathenge, M., Gitau, R., & Ayieko, M. (2020). Managing climate risk through crop diversification in rural Kenya. Climatic Change.
Omerkhil, N., Chand, T., Valente, D., (2020). Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan. Ecol Indicators, 110(June 2019).
Orlov A, Daloz AS, Sillmann J et al (2021) Global economic responses to heat stress impacts on worker productivity in crop production. Econ Dis Cli Change 5:367–390.
Parker DE (2004) Climate: large-scale warming is not urban. Nature 432(7015):290.
Prabhakar, S. V. R. K., & Shaw, R. (2007). Climate change adaptation implications for drought risk mitigation: a perspective for India. Climatic Change, 88(2), 113–130.
Reid, H., Alam, M., Berger, R., Cannon, T., & Milligan, A. (2009). Community-based adaptation to climate change, participatory learning and action. London: International Institute for Environment and Development.
Reyer, C. P. ., Otto, I. M., Adams, S., Albrecht, T, M. Stagl, J. (2015). Climate change impacts in Central Asia and their implications for development. Environmental Change, 17(6), 1639–1650.
Safi, L. (2023). Review of Afghanistan’s development pattern from 2001 to 2021: a relative lacked sustainability, inclusiveness, and prosperity. J. Soc. Econ. Dev.. https://doi.org/10.1007/s40847-023-00268-7.
Safi, L. S., Mavi, G. S., Hariderjeet Kaur, H. K., Puja Srivastava, P. S., Achla Sharma, A. S., Sohu, V. S., & Bains, N. S. (2018). High yielding wheat lines carrying superior grain and processing quality introgressed from tall traditional cultivars. Electronic Journal of Plant Breeding, 9 (3):863-872.
Safi, L., Mujeeb, M., Sahak, K. et al. (2024). Climate change impacts and threats on basic livelihood resources, food security and social stability in Afghanistan. GeoJournal 89, 85. https://doi.org/10.1007/s10708-024-11077-8.
Safi, L.,Singh, R., and Abraham T. (2017a). Analysis of Agro-Morphological Characters in Wheat (Triticum aestivum L.) Genotypes for Yield and Yield Components. Int.J.Curr.Microbiol.App.Sci. 6(9): 578-585.
Safi, L.,Singh, R., and Abraham T. (2017b). Assessment of heritability and genetic parameters in wheat (Triticum aestivum L.) based on agronomic and morphological traits. Journal of Pharmacognosy and Phytochemistry 2017; 6(5): 18-21
Sediqi, M. N., Shiru, M. S., Nashwan, M. S., Ali, R., Abubaker, S., Wang, X., Ahmed, K., (2019). Spatio-temporal pattern in the changes in availability and sustainability of water resources in Afghanistan. Sustainability , 11(20). https:// doi. org/ 10. 3390/ su11205836.
Sediqi, M.N., Hendrawan, V.S.A. & Komori, D. Climate projections over different climatic regions of Afghanistan undershared socioeconomic scenarios. Theor Appl Climatol 149, 511–524 (2022).
Singh, R., Singh, H., & Raghubanshi, A. S. Challenges and opportunities for agricultural sustainability in changing climate scenarios: a perspective on Indian agriculture. (2019) Tropical Ecology.
Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation Strategies for Global Change, 7, 85–114.
Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31), 41576–41595.
Verchot, L. V., Van Noordwijk, M., Kandji, et.al, (2007). Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change, 12(5), 901–918.
Von Grebmer, KJ Bernstein, C Delgado, D Smith et al. (2021) Global Hunger Index 2021: Hunger and Food Systems in Conflict Settings. Bonn: Welthungerhilfe; and Dublin: Concern Worldwide.
Waldron, A., Miller, D. C., Redding, D., Mooers, A., Kuhn, T. S., Nibbelink, N., et al. (2017). Reductions in global biodiversity loss predicted from conservation spending. Nature, 551, 364.
Wu, W., Ma, B., & Uphoff, N. (2015). A review of the system of rice intensification in China. Plant and Soil, 393(1–2), 361–381.
Yau S, Nimah M, Farran M (2011) Early sowing and irrigation to increase barley yields and water use efficiency in Mediterranean conditions. Agric Water Manag 98:1776–1781.