Main Article Content
Abstract
Rice has been used as staple food for people in various nations. As CO2 is one of the limiting factors in photosynthesis, adding this gas can increase photosynthesis, increasing rice seedlings` growth. Concentration of eCO2 treatment was 600 to 800 μmol mol-1, ambient CO2 (aCO2) was 410 μmol mol-1 to 415 μmol mol-1 and controlled at field conditions. The results demonstrated that the leaf properties of rice seedlings, for instance, leaf length, leaf number per plant, and leaf area, were increased by 9.20%, 10.28%, and 25.67%, respectively, in eCO2 compared to control. Similarly, the general growth properties such as seedling length and seedling dry weight were increased by 18.25 and 34.21% respectively, under eCO2 compared to the control.
Keywords
Article Details
Copyright (c) 1403 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- صالحی، م. ص.؛ حمیم، ح. (۱۴۰۳). د وریجو پر ودې او حاصل باندی د اقلیم د بدلون اغیزې.علم او فن علمی څیړنیزه مجله. ۲(۶۲)، ۷۳-۸۱.
- Abdullah, A. B., S. Ito, and K. Adhana. (2006). Estimate of rice consumption in Asian countries and the world towards 2050. Proc. Work. Conf. Rice World Stake., 2(3), 28–43. http://worldfood2.apionet.or.jp/alias.
- Abzar, A., M. Nizam, M. Said, W. Juliana, Ahmad, W. Mohtar, and W. Yusoff. (2017). Elevated CO2 concentration enhances germination, seedling growth, and vigour of rice. Ecol. Environ. Conserv., 23(10), 41–45. https://www.researchgate.net/
- Anonymous. (2019). United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights. ST/ESA/SER.A/423.https://www.un.org/development/desa/pd/content/world-population-prospects-2019-data-booklet
- De Costa, W. A. J. M., Weerakoon, W. M. W., Herath, H. M. L. K., & Abeywardena, R. M. I. (2003). Response of growth and yield of rice (Oryza sativa) to elevated atmospheric carbon dioxide in the subhumid zone of Sri Lanka. Journal of Agronomy & Crop Science, 189(2), 83–95. https://doi.org/10.1046/j.1439-037X.2003.00013.x
- Hasegawa, T., H. Sakai, T. Tokida, H. Nakamura, C. Zhu, Y. Usui, M. Yoshimoto, M. Fukuka, H. Wakatsuki, N. Katayanagi, T. Matsunami, Y. Kanita, T. Sato, F. Takaki, R. Sameshima, and, A. Makino. (2013). Rice cultivar responses to elevated CO2 at two free-air CO2. Funct. Plant Biol., 40(53), 148–159. http://dx.doi.org/10.1071/FP12357
- Jing, L. Q., Y. Wu, Z. Zhaung, S.T. Wang, Y. X. Zhu, J.G. Wang, Y.L. Yang. (2016). Effects of CO2 enrichment and spikelet removal on rice quality under open-air field conditions. J. of Integr. Agric., 15(9): 2012–2022. https://doi.org/10.1016/S2095-3119(15)61245-X
- Khush, G. S. (1997). Origin, dispersal, cultivation, and variation of rice. Plant. Molc. Biol., 35(1–2), 25–34. https://doi.org/10.1007/978-94-011-5794-0_3
- Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant. Mol. Biology., 59(1), (1–6). https://doi.org/10.1007/s11103-005-2159-5
- Lamichaney, A., D. Kumar, P. Biswal, V. Kumar, N. Pratap, K. Krishna, D. Kumar, P. Biswal, V. Kumar, N. Pratap, and K. Krishna. (2019). Elevated atmospheric carbon–dioxide affects the seed vigour of rice (Oryza sativa L.). Environ. Exp. Bot., 157(3), 171–176. https://doi.org/10.1016/j.envexpbot.2018.10.011
- Li, J. Y., X. H. Liu, Q. S. Cai, H. Gu, S. S. Zhang, Y. Y. Wu, and C. J. Wang. (2008). Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation, and related enzymes in rice leaves during the sink-source transition. J. Integr. Plant Biol., 50(6), 723–732. https://doi.org/10.1111/j.1744-7909.2008.00666.x
- Liu, S., M. A. Waqas, S. H. Wang, X. Y. Xiong, and Y. F. Wan. (2017). Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS ONE, 12(11), 1–15. https://doi.org/10.1371/journal.pone.0187724
- Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev.of Plant Biol., 55(1), 591–628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
- Maity, P. P., Chakrabarti, B., Bhatia, A., & Purakayastha, T. (2019). Effect of elevated CO2 and temperature on spikelet sterility in rice. Current Advances in Agricultural Sciences, 11(1), 34. https://doi.org/10.5958/2394-4471.2019.00005.4
- Ministry of Agriculture Irrigation and livestock (MAIL), rice production report, November (2023). mail.gov.af/sites/default/files/2023-12/گزارش تولید برنج سال 1402.pdf
- Muthayya, S., J. D. Sugimoto, S. Montgomery, and G. F. Maberly. (2014). An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad.Sci., 1324(1), 7–14. https://doi.org/10.1111/nyas.12540
- Patindol, J. A., T. J. Siebenmorgen, and Y. Wang. (2015). Impact of environmental factors on rice starch structure: A review. J. Starch, 67(1–2), 42–54. https://doi.org/10.1002/star.201400174
- Raj, A., Chakrabarti, B., Pathak, H., Singh, S. D., Mina, U., & Purakayastha, T. J. (2019). Growth, yield, and nitrogen uptake in rice crops grown under elevated carbon dioxide and different doses of nitrogen fertilizer. Indian Journal of Experimental Biology, 57(3), 181–187. cabidigitallibrary.org/doi/full/10.5555/20193218959
- Sakai, H., Yagi, K., Kobayashi, K., & Kawashima, S. (2001). Rice carbon balance under elevated CO2. New Phytologist, 150 (1992), 241–249. https://doi.org/ 10.1046/j.1469-8137.2001.00105.x
- Salihi, M. S. (2024). Effects of Elevated CO2 on Rice Seedling Establishment of MR219 and Sri Malayisa 1 Varieties.Pakistan Journal of Botany, 56(3), 1–6. DOI: http://dx.doi.org/10.30848/PJB2024-3(5)
- Salihi, M. S., Fazli, E., & Baray, S. M. (2024). Climate-smart Rice Production: A Review. Nangarhar University International Journal of Biosciences, Special issue, 139–142.https://nuijb.nu.edu.af/index.php/nuijb/article/view/186/126
- Salihi, M. S., M.S., A.-H., & and Jusoh M. et al. (2023). The Impacts of Carbon Dioxide (CO2) Enrichment on Rice (Oryza sativa L.) Production: A Review. Pakistan Journal of Botany, 3(15). https://doi.org/http://dx.doi.org/10.30848/PJB2023-3(15)
- SAS Institute Inc.2016.SAS ® 9.4 Language Reference: Concepts, Sixth Edition. Cary, NC: SAS Institute. Inc. SAS Help Center: SAS 9.4 Language Reference: Concepts, Sixth Edition
- Seneweera, S. (2011). Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. Journal of Plant Interactions, 6(1), 35–42. https://doi.org/10.1080/17429145.2010.513483
- Shahbandeh, M. (23 April 2021). Rice statistics and facts. Statista. https://www.statista.com/topics/1443/rice/
- Tans. P, and R. Keeling. ( 5 Aug 2021). Monthly average Mauna Loa CO2. Global Monitoring Laboratories. https:// wwwNoaa.gov/ccgg/trends/) & https://www.scrippsco2.ucsd.edu/).
- Tsutsumi, K., M. Konno, S. I. Miyazawa, and M. Miyao. (2014). Sites of action of elevated CO2 on leaf development in rice: Discrimination between the effects of elevated CO2 and nitrogen deficiency. Plant.Cell. Physio., 55(2), 258–268. https://doi.org/10.1093/pcp/pcu006
- Wang, J., C. Wang, N. Chen, Z. Xiong, D. Wolfe, and J. Zou. (2015). Response of rice production to elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis. Clim. Change., 130(4), 529–543. https://doi.org/10.1007/s10584-015-1374-6
- Wang, Y., M. Frei, Q. Song, and L. Yang. (2011). The impact of atmospheric CO2 concentration enrichment on rice quality – A research review. Acta Ecol. Sin., 31(6),277–282. https://doi.org/10.1016/j.chnaes.2011.09.006
- Wohlfahrt, Y., J. P. Smith, S. Tittmann, B. Honermeier, and M. Stoll. (2018). Primary productivity and physiological responses of Vitis vinifera L. CVS. under free-air carbon dioxide enrichment (FACE). Eur. J. Agron., 101(2), 149–162. https://doi.org/10.1016/j.eja.2018.09.005
- Yoshida, S., (1973). Effects of CO2 enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Sci.Plant Nutr., 19(4), 311–316. https://doi.org/10.1080/00380768.1973.10432600
References
صالحی، م. ص.؛ حمیم، ح. (۱۴۰۳). د وریجو پر ودې او حاصل باندی د اقلیم د بدلون اغیزې.علم او فن علمی څیړنیزه مجله. ۲(۶۲)، ۷۳-۸۱.
Abdullah, A. B., S. Ito, and K. Adhana. (2006). Estimate of rice consumption in Asian countries and the world towards 2050. Proc. Work. Conf. Rice World Stake., 2(3), 28–43. http://worldfood2.apionet.or.jp/alias.
Abzar, A., M. Nizam, M. Said, W. Juliana, Ahmad, W. Mohtar, and W. Yusoff. (2017). Elevated CO2 concentration enhances germination, seedling growth, and vigour of rice. Ecol. Environ. Conserv., 23(10), 41–45. https://www.researchgate.net/
Anonymous. (2019). United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights. ST/ESA/SER.A/423.https://www.un.org/development/desa/pd/content/world-population-prospects-2019-data-booklet
De Costa, W. A. J. M., Weerakoon, W. M. W., Herath, H. M. L. K., & Abeywardena, R. M. I. (2003). Response of growth and yield of rice (Oryza sativa) to elevated atmospheric carbon dioxide in the subhumid zone of Sri Lanka. Journal of Agronomy & Crop Science, 189(2), 83–95. https://doi.org/10.1046/j.1439-037X.2003.00013.x
Hasegawa, T., H. Sakai, T. Tokida, H. Nakamura, C. Zhu, Y. Usui, M. Yoshimoto, M. Fukuka, H. Wakatsuki, N. Katayanagi, T. Matsunami, Y. Kanita, T. Sato, F. Takaki, R. Sameshima, and, A. Makino. (2013). Rice cultivar responses to elevated CO2 at two free-air CO2. Funct. Plant Biol., 40(53), 148–159. http://dx.doi.org/10.1071/FP12357
Jing, L. Q., Y. Wu, Z. Zhaung, S.T. Wang, Y. X. Zhu, J.G. Wang, Y.L. Yang. (2016). Effects of CO2 enrichment and spikelet removal on rice quality under open-air field conditions. J. of Integr. Agric., 15(9): 2012–2022. https://doi.org/10.1016/S2095-3119(15)61245-X
Khush, G. S. (1997). Origin, dispersal, cultivation, and variation of rice. Plant. Molc. Biol., 35(1–2), 25–34. https://doi.org/10.1007/978-94-011-5794-0_3
Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant. Mol. Biology., 59(1), (1–6). https://doi.org/10.1007/s11103-005-2159-5
Lamichaney, A., D. Kumar, P. Biswal, V. Kumar, N. Pratap, K. Krishna, D. Kumar, P. Biswal, V. Kumar, N. Pratap, and K. Krishna. (2019). Elevated atmospheric carbon–dioxide affects the seed vigour of rice (Oryza sativa L.). Environ. Exp. Bot., 157(3), 171–176. https://doi.org/10.1016/j.envexpbot.2018.10.011
Li, J. Y., X. H. Liu, Q. S. Cai, H. Gu, S. S. Zhang, Y. Y. Wu, and C. J. Wang. (2008). Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation, and related enzymes in rice leaves during the sink-source transition. J. Integr. Plant Biol., 50(6), 723–732. https://doi.org/10.1111/j.1744-7909.2008.00666.x
Liu, S., M. A. Waqas, S. H. Wang, X. Y. Xiong, and Y. F. Wan. (2017). Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS ONE, 12(11), 1–15. https://doi.org/10.1371/journal.pone.0187724
Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev.of Plant Biol., 55(1), 591–628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
Maity, P. P., Chakrabarti, B., Bhatia, A., & Purakayastha, T. (2019). Effect of elevated CO2 and temperature on spikelet sterility in rice. Current Advances in Agricultural Sciences, 11(1), 34. https://doi.org/10.5958/2394-4471.2019.00005.4
Ministry of Agriculture Irrigation and livestock (MAIL), rice production report, November (2023). mail.gov.af/sites/default/files/2023-12/گزارش تولید برنج سال 1402.pdf
Muthayya, S., J. D. Sugimoto, S. Montgomery, and G. F. Maberly. (2014). An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad.Sci., 1324(1), 7–14. https://doi.org/10.1111/nyas.12540
Patindol, J. A., T. J. Siebenmorgen, and Y. Wang. (2015). Impact of environmental factors on rice starch structure: A review. J. Starch, 67(1–2), 42–54. https://doi.org/10.1002/star.201400174
Raj, A., Chakrabarti, B., Pathak, H., Singh, S. D., Mina, U., & Purakayastha, T. J. (2019). Growth, yield, and nitrogen uptake in rice crops grown under elevated carbon dioxide and different doses of nitrogen fertilizer. Indian Journal of Experimental Biology, 57(3), 181–187. cabidigitallibrary.org/doi/full/10.5555/20193218959
Sakai, H., Yagi, K., Kobayashi, K., & Kawashima, S. (2001). Rice carbon balance under elevated CO2. New Phytologist, 150 (1992), 241–249. https://doi.org/ 10.1046/j.1469-8137.2001.00105.x
Salihi, M. S. (2024). Effects of Elevated CO2 on Rice Seedling Establishment of MR219 and Sri Malayisa 1 Varieties.Pakistan Journal of Botany, 56(3), 1–6. DOI: http://dx.doi.org/10.30848/PJB2024-3(5)
Salihi, M. S., Fazli, E., & Baray, S. M. (2024). Climate-smart Rice Production: A Review. Nangarhar University International Journal of Biosciences, Special issue, 139–142.https://nuijb.nu.edu.af/index.php/nuijb/article/view/186/126
Salihi, M. S., M.S., A.-H., & and Jusoh M. et al. (2023). The Impacts of Carbon Dioxide (CO2) Enrichment on Rice (Oryza sativa L.) Production: A Review. Pakistan Journal of Botany, 3(15). https://doi.org/http://dx.doi.org/10.30848/PJB2023-3(15)
SAS Institute Inc.2016.SAS ® 9.4 Language Reference: Concepts, Sixth Edition. Cary, NC: SAS Institute. Inc. SAS Help Center: SAS 9.4 Language Reference: Concepts, Sixth Edition
Seneweera, S. (2011). Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. Journal of Plant Interactions, 6(1), 35–42. https://doi.org/10.1080/17429145.2010.513483
Shahbandeh, M. (23 April 2021). Rice statistics and facts. Statista. https://www.statista.com/topics/1443/rice/
Tans. P, and R. Keeling. ( 5 Aug 2021). Monthly average Mauna Loa CO2. Global Monitoring Laboratories. https:// wwwNoaa.gov/ccgg/trends/) & https://www.scrippsco2.ucsd.edu/).
Tsutsumi, K., M. Konno, S. I. Miyazawa, and M. Miyao. (2014). Sites of action of elevated CO2 on leaf development in rice: Discrimination between the effects of elevated CO2 and nitrogen deficiency. Plant.Cell. Physio., 55(2), 258–268. https://doi.org/10.1093/pcp/pcu006
Wang, J., C. Wang, N. Chen, Z. Xiong, D. Wolfe, and J. Zou. (2015). Response of rice production to elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis. Clim. Change., 130(4), 529–543. https://doi.org/10.1007/s10584-015-1374-6
Wang, Y., M. Frei, Q. Song, and L. Yang. (2011). The impact of atmospheric CO2 concentration enrichment on rice quality – A research review. Acta Ecol. Sin., 31(6),277–282. https://doi.org/10.1016/j.chnaes.2011.09.006
Wohlfahrt, Y., J. P. Smith, S. Tittmann, B. Honermeier, and M. Stoll. (2018). Primary productivity and physiological responses of Vitis vinifera L. CVS. under free-air carbon dioxide enrichment (FACE). Eur. J. Agron., 101(2), 149–162. https://doi.org/10.1016/j.eja.2018.09.005
Yoshida, S., (1973). Effects of CO2 enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Sci.Plant Nutr., 19(4), 311–316. https://doi.org/10.1080/00380768.1973.10432600