Main Article Content

Abstract

Internal combustion engines, despite their widespread use, have created serious environmental challenges due to fossil fuel consumption and pollutant emissions. This study examines compressed air engine technology as a clean alternative. The research methodology includes analyzing the performance of this engine, advanced camshaft design, and practical tests to evaluate its speed and efficiency. The findings indicated that this engine can reach a speed of 60 km/h and offers advantages such as reduced pollution, faster refueling, and greater durability compared to electric vehicles. The significance of this technology lies in providing a sustainable solution to reduce fossil fuel dependency and revolutionize the transportation industry. This study demonstrates that the compressed air engine can be a suitable replacement for internal combustion engines.

Keywords

Air Pollution Compressed Air Compressed Air Engine Environment Internal Combustion Engines Mechanical Vehicles

Article Details

How to Cite
Mukhtar, S., Majidi, H., & Abdullah, M. A. (2025). Design of Two-Stroke Compressed Air Engine Based on a Four-Stroke Petrol Engine. Journal of Natural Sciences – Kabul University, 8(2), 81–101. https://doi.org/10.62810/jns.v8i2.64

References

  1. Ayeridis, G. (2020). Electric cars: history and perspectives. In.Bendinskas, A. (2021). Pneumatinio variklio kartingui projektavimas ir jo parametrų tyrimas Kauno technologijos universitetas.]. Link
  2. Boger, T., & Cutler, W. (2018). Reducing Particulate Emissions in Gasoline Engines: An SAE Technical Paper Compilation. SAE International. https://doi10.4271/0768094186. DOI: https://doi.org/10.4271/0768094186
  3. Boretti, A. (2019). Advances in Turbocharged Racing Engines: An SAE Technical Paper Compilation. SAE International.Burton, N. (2013). History of electric cars. Crowood. ISBN is 978-1847974617.
  4. Chinglenthoiba, C., Balaji, V., Abbas, B., & Kumar, A. M. Modification of Compressed Air Technology in Vehicles: A. https://doi.org/10.37628/jsmfe.v2i2.234
  5. Chinglenthoiba, C., Balaji, V., Abbas, B., & Kumar, A. M. (2016a). Classification of Chains Based on Strength and Reliability in Machines. International Journal of Fracture and Damage Mechanics, 1(2), 52-54. https://doi/full/10.1021/ja0771639
  6. Chinglenthoiba, C., Balaji, V., Abbas, B., & Kumar, A. M. (2016b). Modification of Compressed Air Technology in Vehicles: A Review. International Journal of Structural Mechanics and Finite Elements, 2(2), 67-73. https://doi.org/10.37628/jsmfe.v2i2.234
  7. Chinglenthoiba, C., Balaji, V., Abbas, B., & Kumar, A. M. (2016c). Speculative Study of Ball Bearings and Its Related Parts. International Journal of Machine Design and Manufacturing, 1(2), 58-61. https://doi/full/10.1021/ja0771639.
  8. Chinglenthoiba, C., Balaji, V., Abbas, B., & Kumar, A. M. (2016). System design and mechanism of a compressed air engine. International Journal of Mechanical Dynamics & Analysis, 1(2), 45-49. www.journalspub.com
  9. DIDIK, F. (2010). History and directory of electric cars from 1834-1987. Recuperado em novembro de. https://dialnet.unirioja.es/servlet/articulo?codigo=6783637
  10. Gibella Berland, M. (2024). Sustainability in Motion: The Electric Transformation of a Derbi Senda E-XTREME Motorcycle. link
  11. Huang, S. K., Kuo, L., & Chou, K.-L. (2018). The impacts of government policies on green utilization diffusion and social benefits–A case study of electric motorcycles in Taiwan. Energy Policy, 119, 473-486. https://doi.org/10.1016/j.enpol.2018.04.061 DOI: https://doi.org/10.1016/j.enpol.2018.04.061
  12. Keegan, B. C. (2013). A history of newswork on Wikipedia. Proceedings of the 9th international symposium on open collaboration, https://doi.org/10.1145/2491055.2491062 DOI: https://doi.org/10.1145/2491055.2491062
  13. Lu, C.-H., Hwang, Y.-R., & Shen, Y.-T. (2012). Modeling and simulation of a novel pneumatic hybrid motorcycle. International journal of green energy, 9(6), 467-486 https://doi.org/10.1080/15435075.2011.622022. DOI: https://doi.org/10.1080/15435075.2011.622022
  14. May, M. (2010). Former life of the electric car. Scientific American, 303(2), 51-51. Link DOI: https://doi.org/10.1038/scientificamerican0810-51c
  15. Moore, S. W., & Schneider, P. J. (2001). A review of cell equalization methods for lithium ion and lithium polymer battery systems https://doi.org/10.4271/2001-01-0959 DOI: https://doi.org/10.4271/2001-01-0959
  16. Pangeran, A., Shalahuddin, M., Prabaswara, R., Lazuardy, A., Nurcahyo, R., & Habiburrahman, M. (2024). Factors Influencing Community Willingness to Buy Electric Motorcycles for Green Transportation in Indonesia: Towards a Sustainable and Eco-Friendly City. 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), https://doi10.1109/ICETSIS61505.2024.10459429 DOI: https://doi.org/10.1109/ICETSIS61505.2024.10459429
  17. Parker, A. A. (2002). The power assisted bicycle: a green vehicle to reduce greenhouse gas emissions and air pollution. Proceedings of the 25th Australasian Transportation Research Forum. Link
  18. Sanger, L. (2005). The early history of Nupedia and Wikipedia: a memoir. Open sources, 2, 307-338. Link
  19. Schiffer, M. B. (1994). TAKING CHARGE. THE ELECTRICAL AUTOMOBILE IN AMERICA. ISBN: 978-1560983444 (Hardcover), 978-1560984670 (Paperback)
  20. Schiffer, M. B. (2004). The Electric Vehicle: Technology and Expectations in the Automobile Age. By Gijs Mom. Baltimore: Johns Hopkins University Press, 2004. xiii+ 423 pp. Illustrations, photographs, figures, bibliography, notes, index. Cloth, $54.95. ISBN: 0-801-87138-7. Business History Review, 78(3), 548-551. https://doi.org/10.2307/25096928 DOI: https://doi.org/10.2307/25096928
  21. Shen, Y.-T., & Hwang, Y.-R. (2009). Design and implementation of an air-powered motorcycles. Applied Energy, 86(7-8), 1105-1110. https://doi.org/10.1016/j.apenergy.2008.06.008 DOI: https://doi.org/10.1016/j.apenergy.2008.06.008
  22. Simon, M. (2017). Pneumatic vehicle, research and design. Procedia Engineering, 181, 200-205. https://doi.org/10.1016/j.proeng.2017.02.370 DOI: https://doi.org/10.1016/j.proeng.2017.02.370
  23. Stephens, C. (2020). Innovation in Hybrid-Electric Technology for Sustainable Transportation: The Development of a Hybrid Electric Range Extended Motorcycle. https://www.proquest.com/docview/1234567890
  24. Tian, H., Zhang, H., Yin, Z., Liu, Y., Zhang, X., Xu, Y., & Chen, H. (2023). Advancements in compressed air engine technology and power system integration: A comprehensive review. Energy Reviews, 2(4), 100050. https://doi.org/10.1016/j.enrev.2023.100050 DOI: https://doi.org/10.1016/j.enrev.2023.100050
  25. Tien, N. D., Quang, K. V., Luong, N. T., Tuyen, P. H., & Khanh, N. D. (2022). Study on improving emission conversion efficiency of three-way catalyst equipped in carburetor motorcycle by air supplement system. International Journal of Ambient Energy, 43(1), 2137-2145. https://doi.org/10.1080/01430750.2020.1725635 DOI: https://doi.org/10.1080/01430750.2020.1725635
  26. Tsai, J.-H., Yao, Y.-C., Huang, P.-H., & Chiang, H.-L. (2018). Fuel economy and volatile organic compound exhaust emission for motorcycles with various running mileages. Aerosol and Air Quality Research, 18(12), 3056-3067. https://doi.org/10.4209/aaqr.2018.08.0315 DOI: https://doi.org/10.4209/aaqr.2018.07.0264
  27. Van, N. N., & Duc, N. H. PV-INTEGRATED ELECTRIC TWO-WHEELER CHARGING STATIONS: A SOLUTION TOWARDS GREEN CITIES. https://www.crossref.org/
  28. Wang, Y.-W., You, J.-J., Sung, C.-K., & Huang, C.-Y. (2014). The applications of piston type compressed air engines on motor vehicles. Procedia Engineering, 79, 61-65. https://doi.org/10.1016/j.proeng.2014.06.311 DOI: https://doi.org/10.1016/j.proeng.2014.06.311
  29. Yu, Q., & Cai, M. (2015). Experimental analysis of a compressed air engine. Journal of Flow Control, Measurement & Visualization, 3(4), 144-153. https://doi.org/10.4236/jfcmv.2015.34013 DOI: https://doi.org/10.4236/jfcmv.2015.34014
  30. Zhu, Y., Evers, D., Huigen, G., & Hommersom, G. (1990). SAE Technical Paper Series. https://doi.org/10.4271/900123 DOI: https://doi.org/10.4271/900123