Main Article Content

Abstract

This study estimates surface runoff in the Sanjab watershed, located in Herat, Afghanistan, using remote sensing and GIS. Accurate runoff prediction is vital for hydro-technical project planning and watershed management, and the curve number (SCS-CN) method is a widely used technique based on soil and land-use data. The watershed covers 181 km², and data from 2012 to 2021 were analyzed. Results showed the peak surface runoff in 2019 at approximately 17.3 million cubic meters, while the lowest was in 2014 at approximately 9.06 million cubic meters. The average annual runoff was around 12.7 million cubic meters. The area was selected because plans to develop pistachio orchards depended on the available surface water from the Sanjab River, making accurate runoff assessment essential for effective water management and irrigation planning.

Keywords

Curve Number GIS Remote Sensing Runoff SensingWatershed

Article Details

How to Cite
Mujeeb, M., & Hushmand, S. (2026). Estimation of Surface Runoff Using SCS-CN Remote Sensing and GIS in Sanjab Watershed. Journal of Natural Sciences – Kabul University, 8(Special Issue), 303–320. https://doi.org/10.62810/jns.v8iSpecial Issue.514

References

  1. Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A. J., Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. N. (2017). Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate, 5(2). https://doi.org/10.3390/cli5020038
  2. Al-Wagdany, A. S., & Rao, A. R. (1997). Estimation of the velocity parameter of the geomorphologic instantaneous unit hydrograph. Water Resources Management, 11(1), 1–16. https://doi.org/10.1023/A:1 007923906214
  3. Arnold, J. G., Potter, K. N., King, K. W., & Allen, P. M. (2005). Estimation of soil cracking and the effect on surface runoff in a Texas Blackland Prairie watershed. Hydrological Processes, 19(3), 589–603. https://doi.org/10.1002/hyp.5609
  4. Babita, P., & Samanta, S. (2011). Surface runoff estimation and mapping using Remote Sensing and Geographic Information System. International Journal of Advances in Science and Technology, 3(3), 106–114.
  5. Boughton, W. ; C. (1989). Soil and Water Management and Conservation A Review of the USDA SCS Curve Number Method. Aust. J. Soil Res, 2(7), 511–534.
  6. Chadwick, A. J. (Andrew J., Morfett, J. C. (John C. ., & Borthwick, M. (2004). Hydraulics in civil and environmental engineering. Spon Press.
  7. Cook, H. L. (1947). Discussion of "The infiltration approach to the calculation of surface runoff." Eos, Transactions American Geophysical Union, 28(6), 948–950. https://doi.org/10.1029/TR028i006p00948
  8. Corona, R., Wilson, T., D'Adderio, L. P., Porcù, F., Montaldo, N., & Albertson, J. (2013). On the Estimation of Surface Runoff through a New Plot Scale Rainfall Simulator in Sardinia, Italy. Procedia Environmental Sciences, 19, 875–884. https://doi.org/10.1016/j.proenv.2013.06.097
  9. Da Silva, R. M., Santos, C. A. G., De Lima Silva, V. C., & E Silva, L. P. (2013). Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. Environmental Monitoring and Assessment, 185(11), 8977–8990. https://doi.org/10.1007/s10661-013-3228-x
  10. Development, I. (2009). Socio-Economic Impacts of Climate Change in Afghanistan A Report to the Department for International Development.
  11. Dhawale, A. W. (2013). Runoff Estimation for Darewadi Watershed using RS and GIS. International Journal Of Recent Technology and Engineering (IJRTE), 1(6), 46–50. https://doaj.org/article/31fcc428fe87488bae0f3726b9ad39f1
  12. Dumedah, G., Andam-Akorful, S. A., Ampofo, S. T., & Abugri, I. (2021). Characterizing urban morphology types for surface runoff estimation in the Oforikrom Municipality of Ghana. Journal of Hydrology: Regional Studies, 34(August 2020), 100796. https://doi.org/10.1016/j.ejrh.2021.100796
  13. Gajbhiye, S. (2015). Estimation of Surface Runoff Using Remote Sensing and Geographical Information System. International Journal of U- and e-Service, Science and Technology, 8(4), 113–122. https://doi.org/10.14257/ijunesst.2015.8.4.12
  14. Harbor, J. M. (1994). A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology. Journal of the American Planning Association, 60(1), 95–108. https://doi.org/10.1080/01944369408975555
  15. Kandel, D. D., Western, A. W., Grayson, R. B., & Turral, H. N. (2004). Process parameterization and temporal scaling in surface runoff and erosion modelling. Hydrological Processes, 18(8), 1423–1446. https://doi.org/10.1002/hyp.1421
  16. Kumar, A., Kanga, S., Taloor, A. K., Singh, S. K., & Đurin, B. (2021). Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, 4, 61–74. https://doi.org/10.1016/j.hydres.2021.08.001
  17. Lalitha Muthu, A. C., & Helen Santhi, M. (2015). Estimation of Surface Runoff Potential using SCS-CN Method Integrated with GIS. Indian Journal of Science and Technology, 8(28), 1–5. https://doi.org/10.17485/ijst/2015/v8i28/83324
  18. Li, C., Liu, M., Hu, Y., Shi, T., Zong, M., & Walter, M. T. (2018). Assessing the impact of urbanization on direct runoff using improved composite CN method in a large urban area. International Journal of Environmental Research and Public Health, 15(4). https://doi.org/10.3390/ijerph15040775
  19. Li, H., Zhang, Y., & Zhou, X. (2015). Predicting surface runoff from catchment to large region. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/720967
  20. Mahmoud, S. H. (2014). Investigation of rainfall-runoff modeling for Egypt by using remote sensing and GIS integration. Catena, 120, 111–121. https://doi.org/10.1016/j.catena.2014.04.011
  21. Needelman, B. A., Gburek, W. J., Petersen, G. W., Sharpley, A. N., & Kleinman, P. J. A. (2004). Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 68(3), 914–923. https://doi.org/10.2136/sssaj2004.9140
  22. Patil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001
  23. Santhoshi, P., & Kumar, S. (2021). Assessment of Sedimentation in Maithon Reservoir using Remote Sensing and GIS. 48(160623006), 0–3.
  24. Sarwar, A., Pakistan, Q., & Qureshi, A. S. (2002). Water Resources Management in Afghanistan: The Issues and Options.
  25. Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Modeling Earth Systems and Environment, 3(1). https://doi.org/10.1007/s40808-017-0301-4
  26. Sathish Kumar, D., Arya, D. S., & Vojinovic, Z. (2013). Modeling of urban growth dynamics and its impact on surface runoff characteristics. Computers, Environment and Urban Systems, 41, 124–135. https://doi.org/10.1016/j.compenvurbsys.2013.05.004
  27. Sharma, K. D., & Singh, S. (1992). Runoff estimation using landsat thematic mapper data and the SCS model. Hydrological Sciences Journal, 37(1), 39–52. https://doi.org/10.1080/02626669209492560
  28. Sultanbekova, A. K., Mitusov, A. V., Azami, A., & Sagintayev, J. M. (2021). Karizes and Current Prospects for Their Use in Kazakhstan. Central Asian Journal of Water Research, 7, 181–198. https://doi.org/10.29258/cajwr/2021-r1.v7-2/181-198.eng
  29. Tibebe, D., & Bewket, W. (2011). Surface runoff and soil erosion estimation using the SWAT model in the Keleta Watershed, Ethiopia. Land Degradation and Development, 22(6), 551–564. https://doi.org/10.1002/ldr.1034
  30. Vojtek, M., & Vojteková, J. (2016). GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study. Quaestiones Geographicae, 35(3), 97–116. https://doi.org/10.1515/quageo-2016-0030
  31. Vojtek, M., & Vojteková, J. (2019). Land use change and its impact on surface runoff from small basins: A case of Radiša basin. Folia Geographica, 61(2), 104–125.
  32. Wu, X., Wang, K., Li, Y., Liu, K., & Huang, B. (2021). Accelerating haze removal algorithm using cuda. Remote Sensing, 13(1), 1–23. https://doi.org/10.3390/rs13010083
  33. Zaharia, L., Minea, G., Ioana-Toroimac, G., Barbu, R., & Sârbu, I. (2012). Estimation of the Areas with Accelerated Surface Runoff in the Upper Prahova Watershed (Romanian Carpathians). BALWOIS 2012 -Ohrid, June, 1–10.