Main Article Content
Abstract
This study estimates surface runoff in the Sanjab watershed, located in Herat, Afghanistan, using remote sensing and GIS. Accurate runoff prediction is vital for hydro-technical project planning and watershed management, and the curve number (SCS-CN) method is a widely used technique based on soil and land-use data. The watershed covers 181 km², and data from 2012 to 2021 were analyzed. Results showed the peak surface runoff in 2019 at approximately 17.3 million cubic meters, while the lowest was in 2014 at approximately 9.06 million cubic meters. The average annual runoff was around 12.7 million cubic meters. The area was selected because plans to develop pistachio orchards depended on the available surface water from the Sanjab River, making accurate runoff assessment essential for effective water management and irrigation planning.
Keywords
Article Details
Copyright (c) 2026 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A. J., Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. N. (2017). Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate, 5(2). https://doi.org/10.3390/cli5020038
- Al-Wagdany, A. S., & Rao, A. R. (1997). Estimation of the velocity parameter of the geomorphologic instantaneous unit hydrograph. Water Resources Management, 11(1), 1–16. https://doi.org/10.1023/A:1 007923906214
- Arnold, J. G., Potter, K. N., King, K. W., & Allen, P. M. (2005). Estimation of soil cracking and the effect on surface runoff in a Texas Blackland Prairie watershed. Hydrological Processes, 19(3), 589–603. https://doi.org/10.1002/hyp.5609
- Babita, P., & Samanta, S. (2011). Surface runoff estimation and mapping using Remote Sensing and Geographic Information System. International Journal of Advances in Science and Technology, 3(3), 106–114.
- Boughton, W. ; C. (1989). Soil and Water Management and Conservation A Review of the USDA SCS Curve Number Method. Aust. J. Soil Res, 2(7), 511–534.
- Chadwick, A. J. (Andrew J., Morfett, J. C. (John C. ., & Borthwick, M. (2004). Hydraulics in civil and environmental engineering. Spon Press.
- Cook, H. L. (1947). Discussion of "The infiltration approach to the calculation of surface runoff." Eos, Transactions American Geophysical Union, 28(6), 948–950. https://doi.org/10.1029/TR028i006p00948
- Corona, R., Wilson, T., D'Adderio, L. P., Porcù, F., Montaldo, N., & Albertson, J. (2013). On the Estimation of Surface Runoff through a New Plot Scale Rainfall Simulator in Sardinia, Italy. Procedia Environmental Sciences, 19, 875–884. https://doi.org/10.1016/j.proenv.2013.06.097
- Da Silva, R. M., Santos, C. A. G., De Lima Silva, V. C., & E Silva, L. P. (2013). Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. Environmental Monitoring and Assessment, 185(11), 8977–8990. https://doi.org/10.1007/s10661-013-3228-x
- Development, I. (2009). Socio-Economic Impacts of Climate Change in Afghanistan A Report to the Department for International Development.
- Dhawale, A. W. (2013). Runoff Estimation for Darewadi Watershed using RS and GIS. International Journal Of Recent Technology and Engineering (IJRTE), 1(6), 46–50. https://doaj.org/article/31fcc428fe87488bae0f3726b9ad39f1
- Dumedah, G., Andam-Akorful, S. A., Ampofo, S. T., & Abugri, I. (2021). Characterizing urban morphology types for surface runoff estimation in the Oforikrom Municipality of Ghana. Journal of Hydrology: Regional Studies, 34(August 2020), 100796. https://doi.org/10.1016/j.ejrh.2021.100796
- Gajbhiye, S. (2015). Estimation of Surface Runoff Using Remote Sensing and Geographical Information System. International Journal of U- and e-Service, Science and Technology, 8(4), 113–122. https://doi.org/10.14257/ijunesst.2015.8.4.12
- Harbor, J. M. (1994). A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology. Journal of the American Planning Association, 60(1), 95–108. https://doi.org/10.1080/01944369408975555
- Kandel, D. D., Western, A. W., Grayson, R. B., & Turral, H. N. (2004). Process parameterization and temporal scaling in surface runoff and erosion modelling. Hydrological Processes, 18(8), 1423–1446. https://doi.org/10.1002/hyp.1421
- Kumar, A., Kanga, S., Taloor, A. K., Singh, S. K., & Đurin, B. (2021). Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, 4, 61–74. https://doi.org/10.1016/j.hydres.2021.08.001
- Lalitha Muthu, A. C., & Helen Santhi, M. (2015). Estimation of Surface Runoff Potential using SCS-CN Method Integrated with GIS. Indian Journal of Science and Technology, 8(28), 1–5. https://doi.org/10.17485/ijst/2015/v8i28/83324
- Li, C., Liu, M., Hu, Y., Shi, T., Zong, M., & Walter, M. T. (2018). Assessing the impact of urbanization on direct runoff using improved composite CN method in a large urban area. International Journal of Environmental Research and Public Health, 15(4). https://doi.org/10.3390/ijerph15040775
- Li, H., Zhang, Y., & Zhou, X. (2015). Predicting surface runoff from catchment to large region. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/720967
- Mahmoud, S. H. (2014). Investigation of rainfall-runoff modeling for Egypt by using remote sensing and GIS integration. Catena, 120, 111–121. https://doi.org/10.1016/j.catena.2014.04.011
- Needelman, B. A., Gburek, W. J., Petersen, G. W., Sharpley, A. N., & Kleinman, P. J. A. (2004). Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 68(3), 914–923. https://doi.org/10.2136/sssaj2004.9140
- Patil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001
- Santhoshi, P., & Kumar, S. (2021). Assessment of Sedimentation in Maithon Reservoir using Remote Sensing and GIS. 48(160623006), 0–3.
- Sarwar, A., Pakistan, Q., & Qureshi, A. S. (2002). Water Resources Management in Afghanistan: The Issues and Options.
- Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Modeling Earth Systems and Environment, 3(1). https://doi.org/10.1007/s40808-017-0301-4
- Sathish Kumar, D., Arya, D. S., & Vojinovic, Z. (2013). Modeling of urban growth dynamics and its impact on surface runoff characteristics. Computers, Environment and Urban Systems, 41, 124–135. https://doi.org/10.1016/j.compenvurbsys.2013.05.004
- Sharma, K. D., & Singh, S. (1992). Runoff estimation using landsat thematic mapper data and the SCS model. Hydrological Sciences Journal, 37(1), 39–52. https://doi.org/10.1080/02626669209492560
- Sultanbekova, A. K., Mitusov, A. V., Azami, A., & Sagintayev, J. M. (2021). Karizes and Current Prospects for Their Use in Kazakhstan. Central Asian Journal of Water Research, 7, 181–198. https://doi.org/10.29258/cajwr/2021-r1.v7-2/181-198.eng
- Tibebe, D., & Bewket, W. (2011). Surface runoff and soil erosion estimation using the SWAT model in the Keleta Watershed, Ethiopia. Land Degradation and Development, 22(6), 551–564. https://doi.org/10.1002/ldr.1034
- Vojtek, M., & Vojteková, J. (2016). GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study. Quaestiones Geographicae, 35(3), 97–116. https://doi.org/10.1515/quageo-2016-0030
- Vojtek, M., & Vojteková, J. (2019). Land use change and its impact on surface runoff from small basins: A case of Radiša basin. Folia Geographica, 61(2), 104–125.
- Wu, X., Wang, K., Li, Y., Liu, K., & Huang, B. (2021). Accelerating haze removal algorithm using cuda. Remote Sensing, 13(1), 1–23. https://doi.org/10.3390/rs13010083
- Zaharia, L., Minea, G., Ioana-Toroimac, G., Barbu, R., & Sârbu, I. (2012). Estimation of the Areas with Accelerated Surface Runoff in the Upper Prahova Watershed (Romanian Carpathians). BALWOIS 2012 -Ohrid, June, 1–10.
References
Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A. J., Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. N. (2017). Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate, 5(2). https://doi.org/10.3390/cli5020038
Al-Wagdany, A. S., & Rao, A. R. (1997). Estimation of the velocity parameter of the geomorphologic instantaneous unit hydrograph. Water Resources Management, 11(1), 1–16. https://doi.org/10.1023/A:1 007923906214
Arnold, J. G., Potter, K. N., King, K. W., & Allen, P. M. (2005). Estimation of soil cracking and the effect on surface runoff in a Texas Blackland Prairie watershed. Hydrological Processes, 19(3), 589–603. https://doi.org/10.1002/hyp.5609
Babita, P., & Samanta, S. (2011). Surface runoff estimation and mapping using Remote Sensing and Geographic Information System. International Journal of Advances in Science and Technology, 3(3), 106–114.
Boughton, W. ; C. (1989). Soil and Water Management and Conservation A Review of the USDA SCS Curve Number Method. Aust. J. Soil Res, 2(7), 511–534.
Chadwick, A. J. (Andrew J., Morfett, J. C. (John C. ., & Borthwick, M. (2004). Hydraulics in civil and environmental engineering. Spon Press.
Cook, H. L. (1947). Discussion of "The infiltration approach to the calculation of surface runoff." Eos, Transactions American Geophysical Union, 28(6), 948–950. https://doi.org/10.1029/TR028i006p00948
Corona, R., Wilson, T., D'Adderio, L. P., Porcù, F., Montaldo, N., & Albertson, J. (2013). On the Estimation of Surface Runoff through a New Plot Scale Rainfall Simulator in Sardinia, Italy. Procedia Environmental Sciences, 19, 875–884. https://doi.org/10.1016/j.proenv.2013.06.097
Da Silva, R. M., Santos, C. A. G., De Lima Silva, V. C., & E Silva, L. P. (2013). Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. Environmental Monitoring and Assessment, 185(11), 8977–8990. https://doi.org/10.1007/s10661-013-3228-x
Development, I. (2009). Socio-Economic Impacts of Climate Change in Afghanistan A Report to the Department for International Development.
Dhawale, A. W. (2013). Runoff Estimation for Darewadi Watershed using RS and GIS. International Journal Of Recent Technology and Engineering (IJRTE), 1(6), 46–50. https://doaj.org/article/31fcc428fe87488bae0f3726b9ad39f1
Dumedah, G., Andam-Akorful, S. A., Ampofo, S. T., & Abugri, I. (2021). Characterizing urban morphology types for surface runoff estimation in the Oforikrom Municipality of Ghana. Journal of Hydrology: Regional Studies, 34(August 2020), 100796. https://doi.org/10.1016/j.ejrh.2021.100796
Gajbhiye, S. (2015). Estimation of Surface Runoff Using Remote Sensing and Geographical Information System. International Journal of U- and e-Service, Science and Technology, 8(4), 113–122. https://doi.org/10.14257/ijunesst.2015.8.4.12
Harbor, J. M. (1994). A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology. Journal of the American Planning Association, 60(1), 95–108. https://doi.org/10.1080/01944369408975555
Kandel, D. D., Western, A. W., Grayson, R. B., & Turral, H. N. (2004). Process parameterization and temporal scaling in surface runoff and erosion modelling. Hydrological Processes, 18(8), 1423–1446. https://doi.org/10.1002/hyp.1421
Kumar, A., Kanga, S., Taloor, A. K., Singh, S. K., & Đurin, B. (2021). Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, 4, 61–74. https://doi.org/10.1016/j.hydres.2021.08.001
Lalitha Muthu, A. C., & Helen Santhi, M. (2015). Estimation of Surface Runoff Potential using SCS-CN Method Integrated with GIS. Indian Journal of Science and Technology, 8(28), 1–5. https://doi.org/10.17485/ijst/2015/v8i28/83324
Li, C., Liu, M., Hu, Y., Shi, T., Zong, M., & Walter, M. T. (2018). Assessing the impact of urbanization on direct runoff using improved composite CN method in a large urban area. International Journal of Environmental Research and Public Health, 15(4). https://doi.org/10.3390/ijerph15040775
Li, H., Zhang, Y., & Zhou, X. (2015). Predicting surface runoff from catchment to large region. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/720967
Mahmoud, S. H. (2014). Investigation of rainfall-runoff modeling for Egypt by using remote sensing and GIS integration. Catena, 120, 111–121. https://doi.org/10.1016/j.catena.2014.04.011
Needelman, B. A., Gburek, W. J., Petersen, G. W., Sharpley, A. N., & Kleinman, P. J. A. (2004). Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 68(3), 914–923. https://doi.org/10.2136/sssaj2004.9140
Patil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001
Santhoshi, P., & Kumar, S. (2021). Assessment of Sedimentation in Maithon Reservoir using Remote Sensing and GIS. 48(160623006), 0–3.
Sarwar, A., Pakistan, Q., & Qureshi, A. S. (2002). Water Resources Management in Afghanistan: The Issues and Options.
Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Modeling Earth Systems and Environment, 3(1). https://doi.org/10.1007/s40808-017-0301-4
Sathish Kumar, D., Arya, D. S., & Vojinovic, Z. (2013). Modeling of urban growth dynamics and its impact on surface runoff characteristics. Computers, Environment and Urban Systems, 41, 124–135. https://doi.org/10.1016/j.compenvurbsys.2013.05.004
Sharma, K. D., & Singh, S. (1992). Runoff estimation using landsat thematic mapper data and the SCS model. Hydrological Sciences Journal, 37(1), 39–52. https://doi.org/10.1080/02626669209492560
Sultanbekova, A. K., Mitusov, A. V., Azami, A., & Sagintayev, J. M. (2021). Karizes and Current Prospects for Their Use in Kazakhstan. Central Asian Journal of Water Research, 7, 181–198. https://doi.org/10.29258/cajwr/2021-r1.v7-2/181-198.eng
Tibebe, D., & Bewket, W. (2011). Surface runoff and soil erosion estimation using the SWAT model in the Keleta Watershed, Ethiopia. Land Degradation and Development, 22(6), 551–564. https://doi.org/10.1002/ldr.1034
Vojtek, M., & Vojteková, J. (2016). GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study. Quaestiones Geographicae, 35(3), 97–116. https://doi.org/10.1515/quageo-2016-0030
Vojtek, M., & Vojteková, J. (2019). Land use change and its impact on surface runoff from small basins: A case of Radiša basin. Folia Geographica, 61(2), 104–125.
Wu, X., Wang, K., Li, Y., Liu, K., & Huang, B. (2021). Accelerating haze removal algorithm using cuda. Remote Sensing, 13(1), 1–23. https://doi.org/10.3390/rs13010083
Zaharia, L., Minea, G., Ioana-Toroimac, G., Barbu, R., & Sârbu, I. (2012). Estimation of the Areas with Accelerated Surface Runoff in the Upper Prahova Watershed (Romanian Carpathians). BALWOIS 2012 -Ohrid, June, 1–10.