Main Article Content

Abstract

Nanoplastics (NPs) enter aquatic environments through direct discharge, wastewater, and atmospheric deposition, posing significant risks to ecosystem health. This review article examines the environmental fate, physicochemical properties, and toxic effects of NPs. Scientific sources were identified through a comprehensive search of peer-reviewed literature, with a focus on studies investigating the behavior of NPs in aquatic and terrestrial systems and their interactions with natural organic matter. The findings indicate that NPs disrupt food chains in aquatic ecosystems and can enhance toxicity when combined with other pollutants. The formation of an eco-corona also alters the bioavailability and toxicity of NPs, thereby intensifying their harmful effects on aquatic organisms. These findings highlight the need for targeted management and regulatory measures, as well as for future research on computational toxicology and the combined effects of pollutants.

Keywords

Aquatic environment Bioaccumulation Eco-corona Fate Nanoplastics, toxicology

Article Details

How to Cite
Amin, N. (2026). The Dual Role of Environment and Particle Characteristics in Shaping Nanoplastics Toxicity and Fate. Journal of Natural Sciences – Kabul University, 8(Special Issue), 401–416. https://doi.org/10.62810/jns.v8iSpecial Issue.511

References

  1. Adhikari, P., & Thapar, P. (2025). A review on micro and nano plastics: A rising concern as food contaminants. International Journal of Applied Research, 11(1), 134–137. https://doi.org/DOI:10.22271/allresearch.2025.v11.i1b.12270
  2. Ali, I., Tan, X., Peng, C., Naz, I., Zhang, Y., Hernández, A., Marcos, R., Pervez, R., Duan, Z., & Ruan, Y. (2024). Eco- and bio-corona-based microplastics and nanoplastics complexes in the environment: Modulations in the toxicological behavior of plastic particles and factors affecting. Process Safety and Environmental Protection, 187, 356–375. https://doi.org/10.1016/j.psep.2024.04.035
  3. Antunes, J. C., Sobral, P., Branco, V., & Martins, M. (2024). Uncovering layer by layer the risk of nanoplastics to the environment and human health. Journal of Toxicology and Environmental Health, Part B, 28(2), 63–121. https://doi.org/10.1080/10937404.2024.2424156
  4. Arif, N., Yadav, V., Singh, S., Tripathi, D. K., Dubey, N. K., Chauhan, D. K., & Giorgetti, L. (2018). Interaction of Copper Oxide Nanoparticles With Plants. In Nanomaterials in Plants, Algae, and Microorganisms (pp. 297–310). Elsevier. https://doi.org/10.1016/B978-0-12-811487-2.00013-X
  5. Bastante-Rabadán, M., & Boltes, K. (2024). Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. Toxics, 12(8), 589. https://doi.org/10.3390/toxics12080589
  6. Ceylan, E., Bartan, D. B., Öztürk-Ufuk, İ., Topuz, E., & Ayral-Çınar, D. (2024). Interactıon of Micro-Nanoplastics and Heavy Metals in Soil Systems: Mechanism and Implication. In S. A. Bhat, V. Kumar, F. Li, & S. Kumar (Eds.), Management of Micro and Nano-plastics in Soil and Biosolids (pp. 163–201). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51967-3_7
  7. Chanda, M., Bathi, J. R., Khan, E., Katyal, D., & Danquah, M. (2024). Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. Journal of Environmental Management, 370, 122492. https://doi.org/10.1016/j.jenvman.2024.122492
  8. Chen, F., Peng, X., Liu, X., Chen, B., Chen, L., Lu, T., & Gong, Y. (2024). Effects of Low-Molecular-Weight Organic Acids on the Transport of Polystyrene Nanoplastics in Saturated Goethite-Coated Sand Columns. Water, 16(23), 3500. https://doi.org/10.3390/w16233500
  9. Chen, M.-M., Zhang, Y.-Q., Cheng, L.-C., Zhao, F.-J., & Wang, P. (2024). Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. Journal of Hazardous Materials, 475, 134884. https://doi.org/10.1016/j.jhazmat.2024.134884
  10. Cirino, E. (2022). How Nanoplastics Enter the Human Body. Transcend Media Service Solutions-Oriented Peace Journalism. https://www.transcend.org/tms/2022/02/how-nanoplastics-enter-the-human-body/
  11. Dawson, A. L., Bose, U., Ni, D., & Nelis, J. L. D. (2024). Unravelling protein corona formation on pristine and leached microplastics. Microplastics and Nanoplastics, 4(1), 9. https://doi.org/10.1186/s43591-024-00086-6
  12. Dey, P., Bradley, T. M., & Boymelgreen, A. (2024). Trophic transfer and bioaccumulation of nanoplastics in Coryphaena hippurus (mahi-mahi) and effect of depuration. PLOS ONE, 19(11), e0314191. https://doi.org/10.1371/journal.pone.0314191
  13. Ekvall, M. T., Stábile, F., & Hansson, L.-A. (2024). Nanoplastics rewire freshwater food webs. Communications Earth & Environment, 5(1), 486. https://doi.org/10.1038/s43247-024-01646-7
  14. Gangadoo, S., Owen, S., Rajapaksha, P., Plaisted, K., Cheeseman, S., Haddara, H., Truong, V. K., Ngo, S. T., Vu, V. V., Cozzolino, D., Elbourne, A., Crawford, R., Latham, K., & Chapman, J. (2020). Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. Science of The Total Environment, 732, 138792. https://doi.org/10.1016/j.scitotenv.2020.138792
  15. Gao, S., Huang, G., Zhang, P., Yin, J., Li, M., Huang, J., Zhao, K., & Han, D. (2024). Interactive effects of nanoplastics, multi-contaminants, and environmental conditions on prairie aquatic ecosystems: A factorial composite toxicity analysis within a Canadian context. Journal of Hazardous Materials, 479, 135652. https://doi.org/10.1016/j.jhazmat.2024.135652
  16. Giri, S., Saha, T., & Maiti, M. (2024). Seed Priming: A Strategy to Mitigate Flooding Stress in Pulses. International Journal of Environment and Climate Change, 14(3), 42–55. https://doi.org/10.9734/ijecc/2024/v14i34018
  17. Habumugisha, T., Zhang, Z., Uwizewe, C., Yan, C., Ndayishimiye, J. C., Rehman, A., & Zhang, X. (2024). Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. Ecotoxicology and Environmental Safety, 278, 116426. https://doi.org/10.1016/j.ecoenv.2024.116426
  18. Hofmann, T., Henkel, C., Hueffer, T., & Castan, S. (2024). Why nanoplastics do not enhance the transport of contaminants in the critical zone. https://doi.org/10.5194/egusphere-egu24-6160
  19. Hou, Y., Wang, Y., Zhang, Y., Lu, Z., Zhang, Z., Dong, Z., & Qiu, Y. (2025). Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. Journal of Environmental Sciences, 148, 541–552. https://doi.org/10.1016/j.jes.2024.01.029
  20. Junaid, M., Hamid, N., Liu, S., Abbas, Z., Imran, M., Haider, M. R., Wang, B., Chen, G., Khan, H. K., Yue, Q., Xu, N., & Wang, J. (2024). Interactive impacts of photoaged micro(nano)plastics and co-occurring chemicals in the environment. Science of The Total Environment, 927, 172213. https://doi.org/10.1016/j.scitotenv.2024.172213
  21. Liu, S., Junaid, M., Wang, C., & Wang, J. (2024). Eco-corona enhanced the interactive effects of nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonate in zebrafish embryos. Science of The Total Environment, 953, 176223. https://doi.org/10.1016/j.scitotenv.2024.176223
  22. Liu, X., Liang, Y., Peng, Y., Meng, T., Xu, L., & Dong, P. (2022). Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. International Journal of Molecular Sciences, 23(17), 9860. https://doi.org/10.3390/ijms23179860
  23. Mahmud, F., Sarker, D. B., Jocelyn, J. A., & Sang, Q.-X. A. (2024). Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells, 13(21), 1788. https://doi.org/10.3390/cells13211788
  24. Maity, S., Biswas, C., Banerjee, S., Guchhait, R., Adhikari, M., Chatterjee, A., & Pramanick, K. (2021). Interaction of plastic particles with heavy metals and the resulting toxicological impacts: A review. Environmental Science and Pollution Research, 28(43), 60291–60307. https://doi.org/10.1007/s11356-021-16448-z
  25. Müller, S., Fiutowski, J., Rasmussen, M. B., Balic Zunic, T., Rubahn, H.-G., & Posth, N. R. (2025). Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction. Science of The Total Environment, 964, 178529. https://doi.org/10.1016/j.scitotenv.2025.178529
  26. Pradel, A., Ferreres, S., Veclin, C., El Hadri, H., Gautier, M., Grassl, B., & Gigault, J. (2021). Stabilization of Fragmental Polystyrene Nanoplastic by Natural Organic Matter: Insight into Mechanisms. ACS ES&T Water, 1(5), 1198–1208. https://doi.org/10.1021/acsestwater.0c00283
  27. Qian, S., Zhang, H., Leite, W., Whitten, A., Zolnierczuk, P., & Zhang, Q. (2024). Perturbation of Nanoplastics on Biomembranes: Molecular Insights from Neutron Scattering. Chemistry. https://doi.org/10.26434/chemrxiv-2024-mwgqr
  28. Ruan, J., Yang, J., Wang, X., Liang, C., Li, L., Zeng, Y., Wang, J., Li, Y., Huang, W., & Chen, C. (2024). Heteroaggregation kinetics of oppositely charged nanoplastics in aquatic environments: Effects of particle ratio, solution chemistry, and interaction sequence. Journal of Hazardous Materials, 475, 134857. https://doi.org/10.1016/j.jhazmat.2024.134857
  29. Schefer, R. B., Armanious, A., & Mitrano, D. M. (2023). Eco-Corona Formation on Plastics: Adsorption of Dissolved Organic Matter to Pristine and Photochemically Weathered Polymer Surfaces. Environmental Science & Technology, 57(39), 14707–14716. https://doi.org/10.1021/acs.est.3c04180
  30. Şengül, H., Bülbül, O., & Şen, E. H. (2024). Environmental Implications of Physicochemical Differences Between Environmental Nanoplastics and Their Commercial Forms. In Review. https://doi.org/10.21203/rs.3.rs-4254278/v1
  31. Shukla, S., Khanna, S., & Khanna, K. (2025). Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicology Reports, 14, 101844. https://doi.org/10.1016/j.toxrep.2024.101844
  32. Singh, N., Tiwari, E., Khandelwal, N., & Darbha, G. K. (2019). Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environmental Science: Nano, 6(10), 2968–2976. https://doi.org/10.1039/C9EN00557A
  33. Swinnerton, S., Su, J., & Tsai, C. S. J. (2024). The emission and physicochemical properties of airborne microplastics and nanoplastics generated during the mechanical recycling of plastic via shredding. Scientific Reports, 14(1), 24755. https://doi.org/10.1038/s41598-024-73775-0
  34. Tan, M.-M., Feng, L.-J., Bian, S.-Z., Duan, J.-L., Li, X.-H., Sun, X.-D., Sun, Y.-C., Wang, S.-G., & Yuan, X.-Z. (2024). Interaction of Dissolved Organic Matters and Microplastics Regulates the Transport of Microplastics in Saturated Porous Media. ACS ES&T Engineering, 4(5), 1230–1239. https://doi.org/10.1021/acsestengg.3c00615
  35. Tang, D.-Y., Zheng, W.-L., Chen, G.-T.-Y., Chen, S.-L., Chen, Y., Zhao, X.-L., & Wang, H. (2024). [Effect of Water Components on Aggregation and Sedimentation of Polystyrene Nanoplastics]. Huan Jing Ke Xue= Huanjing Kexue, 45(2), 854–861. https://doi.org/10.13227/j.hjkx.202302026
  36. Vazquez, C. I., Chang, H.-M., Gong, G.-C., Shiu, R.-F., & Chin, W.-C. (2024). Impacts of polystyrene nanoplastics on microgel formation from effluent organic matter. Science of The Total Environment, 954, 176209. https://doi.org/10.1016/j.scitotenv.2024.176209
  37. Wang, J., Cong, J., Wu, J., Chen, Y., Fan, H., Wang, X., Duan, Z., & Wang, L. (2023). Nanoplastic-protein corona interactions and their biological effects: A review of recent advances and trends. TrAC Trends in Analytical Chemistry, 166, 117206. https://doi.org/10.1016/j.trac.2023.117206
  38. Wang, S., AL-Hasni, N. S., Liu, Z., & Liu, A. (2024). Multifaceted Aquatic Environmental Differences between Nanoplastics and Microplastics: Behavior and Fate. Environment & Health, 2(10), 688–701. https://doi.org/10.1021/envhealth.4c00013
  39. Wang, Y., Huang, Y., Fu, L., Wang, X., & Chen, L. (2024). Evaluation of nanoplastics-induced redox imbalance in cells, larval zebrafish, and daphnia magna with a superoxide anion radical fluorescent probe. Chemosphere, 356, 141829. https://doi.org/10.1016/j.chemosphere.2024.141829
  40. Wang, Z., Pal, D., Pilechi, A., & Ariya, P. A. (2024). Nanoplastics in Water: Artificial Intelligence-Assisted 4D Physicochemical Characterization and Rapid In Situ Detection. Environmental Science & Technology, 58(20), 8919–8931. https://doi.org/10.1021/acs.est.3c10408
  41. Xu, Y., Wang, X., Van Der Hoek, J. P., Liu, G., & Lompe, K. M. (2025). Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions. Environmental Science & Technology, 59(3), 1822–1834. https://doi.org/10.1021/acs.est.4c11540
  42. Yu, Q., Nederstigt, T. A. P., Wang, Z., Wu, J., Bosker, T., Peijnenburg, W. J. G. M., & Vijver, M. G. (2024). Accumulation kinetics of polystyrene nano- and microplastics in the waterflea Daphnia magna and trophic transfer to the mysid Limnomysis benedeni. Environmental Pollution, 363, 125029. https://doi.org/10.1016/j.envpol.2024.125029
  43. Zhang, P., Liu, Y., Zhang, L., Xu, M., Gao, L., & Zhao, B. (2022). The interaction of micro/nano plastics and the environment: Effects of ecological corona on the toxicity to aquatic organisms. Ecotoxicology and Environmental Safety, 243, 113997. https://doi.org/10.1016/j.ecoenv.2022.113997
  44. Zhang, X., Shen, Z., Wu, J., Su, M., Zheng, L., Xie, M., Hong, H., Huang, X., & Lu, H. (2024). High salinity restrains microplastic transport and increases the risk of pollution in coastal wetlands. Water Research, 267, 122463. https://doi.org/10.1016/j.watres.2024.122463
  45. Zhao, Z., Yao, J., Li, H., Lan, J., Bao, Y., Zhao, L., Zong, W., Long, Y., Feng, L., Hollert, H., & Zhao, X. (2024). Binding of Perfluoroalkyl Substances to Nanoplastic Protein Corona Is pH‐Dependent and Attenuates Their Bioavailability and Toxicity. Small Science, 4(12), 2470055. https://doi.org/10.1002/smsc.202470055
  46. Zhu, J., Miao, G., Jiang, H., Su, H., Wang, Y., Chen, L., Zhang, J., & Wang, Y. (2024). Polystyrene nanoplastics at predicted environmental concentrations enhance the toxicity of copper on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 282, 116749. https://doi.org/10.1016/j.ecoenv.2024.116749