Main Article Content
Abstract
Nanoplastics (NPs) enter aquatic environments through direct discharge, wastewater, and atmospheric deposition, posing significant risks to ecosystem health. This review article examines the environmental fate, physicochemical properties, and toxic effects of NPs. Scientific sources were identified through a comprehensive search of peer-reviewed literature, with a focus on studies investigating the behavior of NPs in aquatic and terrestrial systems and their interactions with natural organic matter. The findings indicate that NPs disrupt food chains in aquatic ecosystems and can enhance toxicity when combined with other pollutants. The formation of an eco-corona also alters the bioavailability and toxicity of NPs, thereby intensifying their harmful effects on aquatic organisms. These findings highlight the need for targeted management and regulatory measures, as well as for future research on computational toxicology and the combined effects of pollutants.
Keywords
Article Details
Copyright (c) 2026 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Adhikari, P., & Thapar, P. (2025). A review on micro and nano plastics: A rising concern as food contaminants. International Journal of Applied Research, 11(1), 134–137. https://doi.org/DOI:10.22271/allresearch.2025.v11.i1b.12270
- Ali, I., Tan, X., Peng, C., Naz, I., Zhang, Y., Hernández, A., Marcos, R., Pervez, R., Duan, Z., & Ruan, Y. (2024). Eco- and bio-corona-based microplastics and nanoplastics complexes in the environment: Modulations in the toxicological behavior of plastic particles and factors affecting. Process Safety and Environmental Protection, 187, 356–375. https://doi.org/10.1016/j.psep.2024.04.035
- Antunes, J. C., Sobral, P., Branco, V., & Martins, M. (2024). Uncovering layer by layer the risk of nanoplastics to the environment and human health. Journal of Toxicology and Environmental Health, Part B, 28(2), 63–121. https://doi.org/10.1080/10937404.2024.2424156
- Arif, N., Yadav, V., Singh, S., Tripathi, D. K., Dubey, N. K., Chauhan, D. K., & Giorgetti, L. (2018). Interaction of Copper Oxide Nanoparticles With Plants. In Nanomaterials in Plants, Algae, and Microorganisms (pp. 297–310). Elsevier. https://doi.org/10.1016/B978-0-12-811487-2.00013-X
- Bastante-Rabadán, M., & Boltes, K. (2024). Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. Toxics, 12(8), 589. https://doi.org/10.3390/toxics12080589
- Ceylan, E., Bartan, D. B., Öztürk-Ufuk, İ., Topuz, E., & Ayral-Çınar, D. (2024). Interactıon of Micro-Nanoplastics and Heavy Metals in Soil Systems: Mechanism and Implication. In S. A. Bhat, V. Kumar, F. Li, & S. Kumar (Eds.), Management of Micro and Nano-plastics in Soil and Biosolids (pp. 163–201). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51967-3_7
- Chanda, M., Bathi, J. R., Khan, E., Katyal, D., & Danquah, M. (2024). Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. Journal of Environmental Management, 370, 122492. https://doi.org/10.1016/j.jenvman.2024.122492
- Chen, F., Peng, X., Liu, X., Chen, B., Chen, L., Lu, T., & Gong, Y. (2024). Effects of Low-Molecular-Weight Organic Acids on the Transport of Polystyrene Nanoplastics in Saturated Goethite-Coated Sand Columns. Water, 16(23), 3500. https://doi.org/10.3390/w16233500
- Chen, M.-M., Zhang, Y.-Q., Cheng, L.-C., Zhao, F.-J., & Wang, P. (2024). Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. Journal of Hazardous Materials, 475, 134884. https://doi.org/10.1016/j.jhazmat.2024.134884
- Cirino, E. (2022). How Nanoplastics Enter the Human Body. Transcend Media Service Solutions-Oriented Peace Journalism. https://www.transcend.org/tms/2022/02/how-nanoplastics-enter-the-human-body/
- Dawson, A. L., Bose, U., Ni, D., & Nelis, J. L. D. (2024). Unravelling protein corona formation on pristine and leached microplastics. Microplastics and Nanoplastics, 4(1), 9. https://doi.org/10.1186/s43591-024-00086-6
- Dey, P., Bradley, T. M., & Boymelgreen, A. (2024). Trophic transfer and bioaccumulation of nanoplastics in Coryphaena hippurus (mahi-mahi) and effect of depuration. PLOS ONE, 19(11), e0314191. https://doi.org/10.1371/journal.pone.0314191
- Ekvall, M. T., Stábile, F., & Hansson, L.-A. (2024). Nanoplastics rewire freshwater food webs. Communications Earth & Environment, 5(1), 486. https://doi.org/10.1038/s43247-024-01646-7
- Gangadoo, S., Owen, S., Rajapaksha, P., Plaisted, K., Cheeseman, S., Haddara, H., Truong, V. K., Ngo, S. T., Vu, V. V., Cozzolino, D., Elbourne, A., Crawford, R., Latham, K., & Chapman, J. (2020). Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. Science of The Total Environment, 732, 138792. https://doi.org/10.1016/j.scitotenv.2020.138792
- Gao, S., Huang, G., Zhang, P., Yin, J., Li, M., Huang, J., Zhao, K., & Han, D. (2024). Interactive effects of nanoplastics, multi-contaminants, and environmental conditions on prairie aquatic ecosystems: A factorial composite toxicity analysis within a Canadian context. Journal of Hazardous Materials, 479, 135652. https://doi.org/10.1016/j.jhazmat.2024.135652
- Giri, S., Saha, T., & Maiti, M. (2024). Seed Priming: A Strategy to Mitigate Flooding Stress in Pulses. International Journal of Environment and Climate Change, 14(3), 42–55. https://doi.org/10.9734/ijecc/2024/v14i34018
- Habumugisha, T., Zhang, Z., Uwizewe, C., Yan, C., Ndayishimiye, J. C., Rehman, A., & Zhang, X. (2024). Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. Ecotoxicology and Environmental Safety, 278, 116426. https://doi.org/10.1016/j.ecoenv.2024.116426
- Hofmann, T., Henkel, C., Hueffer, T., & Castan, S. (2024). Why nanoplastics do not enhance the transport of contaminants in the critical zone. https://doi.org/10.5194/egusphere-egu24-6160
- Hou, Y., Wang, Y., Zhang, Y., Lu, Z., Zhang, Z., Dong, Z., & Qiu, Y. (2025). Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. Journal of Environmental Sciences, 148, 541–552. https://doi.org/10.1016/j.jes.2024.01.029
- Junaid, M., Hamid, N., Liu, S., Abbas, Z., Imran, M., Haider, M. R., Wang, B., Chen, G., Khan, H. K., Yue, Q., Xu, N., & Wang, J. (2024). Interactive impacts of photoaged micro(nano)plastics and co-occurring chemicals in the environment. Science of The Total Environment, 927, 172213. https://doi.org/10.1016/j.scitotenv.2024.172213
- Liu, S., Junaid, M., Wang, C., & Wang, J. (2024). Eco-corona enhanced the interactive effects of nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonate in zebrafish embryos. Science of The Total Environment, 953, 176223. https://doi.org/10.1016/j.scitotenv.2024.176223
- Liu, X., Liang, Y., Peng, Y., Meng, T., Xu, L., & Dong, P. (2022). Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. International Journal of Molecular Sciences, 23(17), 9860. https://doi.org/10.3390/ijms23179860
- Mahmud, F., Sarker, D. B., Jocelyn, J. A., & Sang, Q.-X. A. (2024). Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells, 13(21), 1788. https://doi.org/10.3390/cells13211788
- Maity, S., Biswas, C., Banerjee, S., Guchhait, R., Adhikari, M., Chatterjee, A., & Pramanick, K. (2021). Interaction of plastic particles with heavy metals and the resulting toxicological impacts: A review. Environmental Science and Pollution Research, 28(43), 60291–60307. https://doi.org/10.1007/s11356-021-16448-z
- Müller, S., Fiutowski, J., Rasmussen, M. B., Balic Zunic, T., Rubahn, H.-G., & Posth, N. R. (2025). Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction. Science of The Total Environment, 964, 178529. https://doi.org/10.1016/j.scitotenv.2025.178529
- Pradel, A., Ferreres, S., Veclin, C., El Hadri, H., Gautier, M., Grassl, B., & Gigault, J. (2021). Stabilization of Fragmental Polystyrene Nanoplastic by Natural Organic Matter: Insight into Mechanisms. ACS ES&T Water, 1(5), 1198–1208. https://doi.org/10.1021/acsestwater.0c00283
- Qian, S., Zhang, H., Leite, W., Whitten, A., Zolnierczuk, P., & Zhang, Q. (2024). Perturbation of Nanoplastics on Biomembranes: Molecular Insights from Neutron Scattering. Chemistry. https://doi.org/10.26434/chemrxiv-2024-mwgqr
- Ruan, J., Yang, J., Wang, X., Liang, C., Li, L., Zeng, Y., Wang, J., Li, Y., Huang, W., & Chen, C. (2024). Heteroaggregation kinetics of oppositely charged nanoplastics in aquatic environments: Effects of particle ratio, solution chemistry, and interaction sequence. Journal of Hazardous Materials, 475, 134857. https://doi.org/10.1016/j.jhazmat.2024.134857
- Schefer, R. B., Armanious, A., & Mitrano, D. M. (2023). Eco-Corona Formation on Plastics: Adsorption of Dissolved Organic Matter to Pristine and Photochemically Weathered Polymer Surfaces. Environmental Science & Technology, 57(39), 14707–14716. https://doi.org/10.1021/acs.est.3c04180
- Şengül, H., Bülbül, O., & Şen, E. H. (2024). Environmental Implications of Physicochemical Differences Between Environmental Nanoplastics and Their Commercial Forms. In Review. https://doi.org/10.21203/rs.3.rs-4254278/v1
- Shukla, S., Khanna, S., & Khanna, K. (2025). Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicology Reports, 14, 101844. https://doi.org/10.1016/j.toxrep.2024.101844
- Singh, N., Tiwari, E., Khandelwal, N., & Darbha, G. K. (2019). Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environmental Science: Nano, 6(10), 2968–2976. https://doi.org/10.1039/C9EN00557A
- Swinnerton, S., Su, J., & Tsai, C. S. J. (2024). The emission and physicochemical properties of airborne microplastics and nanoplastics generated during the mechanical recycling of plastic via shredding. Scientific Reports, 14(1), 24755. https://doi.org/10.1038/s41598-024-73775-0
- Tan, M.-M., Feng, L.-J., Bian, S.-Z., Duan, J.-L., Li, X.-H., Sun, X.-D., Sun, Y.-C., Wang, S.-G., & Yuan, X.-Z. (2024). Interaction of Dissolved Organic Matters and Microplastics Regulates the Transport of Microplastics in Saturated Porous Media. ACS ES&T Engineering, 4(5), 1230–1239. https://doi.org/10.1021/acsestengg.3c00615
- Tang, D.-Y., Zheng, W.-L., Chen, G.-T.-Y., Chen, S.-L., Chen, Y., Zhao, X.-L., & Wang, H. (2024). [Effect of Water Components on Aggregation and Sedimentation of Polystyrene Nanoplastics]. Huan Jing Ke Xue= Huanjing Kexue, 45(2), 854–861. https://doi.org/10.13227/j.hjkx.202302026
- Vazquez, C. I., Chang, H.-M., Gong, G.-C., Shiu, R.-F., & Chin, W.-C. (2024). Impacts of polystyrene nanoplastics on microgel formation from effluent organic matter. Science of The Total Environment, 954, 176209. https://doi.org/10.1016/j.scitotenv.2024.176209
- Wang, J., Cong, J., Wu, J., Chen, Y., Fan, H., Wang, X., Duan, Z., & Wang, L. (2023). Nanoplastic-protein corona interactions and their biological effects: A review of recent advances and trends. TrAC Trends in Analytical Chemistry, 166, 117206. https://doi.org/10.1016/j.trac.2023.117206
- Wang, S., AL-Hasni, N. S., Liu, Z., & Liu, A. (2024). Multifaceted Aquatic Environmental Differences between Nanoplastics and Microplastics: Behavior and Fate. Environment & Health, 2(10), 688–701. https://doi.org/10.1021/envhealth.4c00013
- Wang, Y., Huang, Y., Fu, L., Wang, X., & Chen, L. (2024). Evaluation of nanoplastics-induced redox imbalance in cells, larval zebrafish, and daphnia magna with a superoxide anion radical fluorescent probe. Chemosphere, 356, 141829. https://doi.org/10.1016/j.chemosphere.2024.141829
- Wang, Z., Pal, D., Pilechi, A., & Ariya, P. A. (2024). Nanoplastics in Water: Artificial Intelligence-Assisted 4D Physicochemical Characterization and Rapid In Situ Detection. Environmental Science & Technology, 58(20), 8919–8931. https://doi.org/10.1021/acs.est.3c10408
- Xu, Y., Wang, X., Van Der Hoek, J. P., Liu, G., & Lompe, K. M. (2025). Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions. Environmental Science & Technology, 59(3), 1822–1834. https://doi.org/10.1021/acs.est.4c11540
- Yu, Q., Nederstigt, T. A. P., Wang, Z., Wu, J., Bosker, T., Peijnenburg, W. J. G. M., & Vijver, M. G. (2024). Accumulation kinetics of polystyrene nano- and microplastics in the waterflea Daphnia magna and trophic transfer to the mysid Limnomysis benedeni. Environmental Pollution, 363, 125029. https://doi.org/10.1016/j.envpol.2024.125029
- Zhang, P., Liu, Y., Zhang, L., Xu, M., Gao, L., & Zhao, B. (2022). The interaction of micro/nano plastics and the environment: Effects of ecological corona on the toxicity to aquatic organisms. Ecotoxicology and Environmental Safety, 243, 113997. https://doi.org/10.1016/j.ecoenv.2022.113997
- Zhang, X., Shen, Z., Wu, J., Su, M., Zheng, L., Xie, M., Hong, H., Huang, X., & Lu, H. (2024). High salinity restrains microplastic transport and increases the risk of pollution in coastal wetlands. Water Research, 267, 122463. https://doi.org/10.1016/j.watres.2024.122463
- Zhao, Z., Yao, J., Li, H., Lan, J., Bao, Y., Zhao, L., Zong, W., Long, Y., Feng, L., Hollert, H., & Zhao, X. (2024). Binding of Perfluoroalkyl Substances to Nanoplastic Protein Corona Is pH‐Dependent and Attenuates Their Bioavailability and Toxicity. Small Science, 4(12), 2470055. https://doi.org/10.1002/smsc.202470055
- Zhu, J., Miao, G., Jiang, H., Su, H., Wang, Y., Chen, L., Zhang, J., & Wang, Y. (2024). Polystyrene nanoplastics at predicted environmental concentrations enhance the toxicity of copper on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 282, 116749. https://doi.org/10.1016/j.ecoenv.2024.116749
References
Adhikari, P., & Thapar, P. (2025). A review on micro and nano plastics: A rising concern as food contaminants. International Journal of Applied Research, 11(1), 134–137. https://doi.org/DOI:10.22271/allresearch.2025.v11.i1b.12270
Ali, I., Tan, X., Peng, C., Naz, I., Zhang, Y., Hernández, A., Marcos, R., Pervez, R., Duan, Z., & Ruan, Y. (2024). Eco- and bio-corona-based microplastics and nanoplastics complexes in the environment: Modulations in the toxicological behavior of plastic particles and factors affecting. Process Safety and Environmental Protection, 187, 356–375. https://doi.org/10.1016/j.psep.2024.04.035
Antunes, J. C., Sobral, P., Branco, V., & Martins, M. (2024). Uncovering layer by layer the risk of nanoplastics to the environment and human health. Journal of Toxicology and Environmental Health, Part B, 28(2), 63–121. https://doi.org/10.1080/10937404.2024.2424156
Arif, N., Yadav, V., Singh, S., Tripathi, D. K., Dubey, N. K., Chauhan, D. K., & Giorgetti, L. (2018). Interaction of Copper Oxide Nanoparticles With Plants. In Nanomaterials in Plants, Algae, and Microorganisms (pp. 297–310). Elsevier. https://doi.org/10.1016/B978-0-12-811487-2.00013-X
Bastante-Rabadán, M., & Boltes, K. (2024). Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. Toxics, 12(8), 589. https://doi.org/10.3390/toxics12080589
Ceylan, E., Bartan, D. B., Öztürk-Ufuk, İ., Topuz, E., & Ayral-Çınar, D. (2024). Interactıon of Micro-Nanoplastics and Heavy Metals in Soil Systems: Mechanism and Implication. In S. A. Bhat, V. Kumar, F. Li, & S. Kumar (Eds.), Management of Micro and Nano-plastics in Soil and Biosolids (pp. 163–201). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51967-3_7
Chanda, M., Bathi, J. R., Khan, E., Katyal, D., & Danquah, M. (2024). Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. Journal of Environmental Management, 370, 122492. https://doi.org/10.1016/j.jenvman.2024.122492
Chen, F., Peng, X., Liu, X., Chen, B., Chen, L., Lu, T., & Gong, Y. (2024). Effects of Low-Molecular-Weight Organic Acids on the Transport of Polystyrene Nanoplastics in Saturated Goethite-Coated Sand Columns. Water, 16(23), 3500. https://doi.org/10.3390/w16233500
Chen, M.-M., Zhang, Y.-Q., Cheng, L.-C., Zhao, F.-J., & Wang, P. (2024). Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. Journal of Hazardous Materials, 475, 134884. https://doi.org/10.1016/j.jhazmat.2024.134884
Cirino, E. (2022). How Nanoplastics Enter the Human Body. Transcend Media Service Solutions-Oriented Peace Journalism. https://www.transcend.org/tms/2022/02/how-nanoplastics-enter-the-human-body/
Dawson, A. L., Bose, U., Ni, D., & Nelis, J. L. D. (2024). Unravelling protein corona formation on pristine and leached microplastics. Microplastics and Nanoplastics, 4(1), 9. https://doi.org/10.1186/s43591-024-00086-6
Dey, P., Bradley, T. M., & Boymelgreen, A. (2024). Trophic transfer and bioaccumulation of nanoplastics in Coryphaena hippurus (mahi-mahi) and effect of depuration. PLOS ONE, 19(11), e0314191. https://doi.org/10.1371/journal.pone.0314191
Ekvall, M. T., Stábile, F., & Hansson, L.-A. (2024). Nanoplastics rewire freshwater food webs. Communications Earth & Environment, 5(1), 486. https://doi.org/10.1038/s43247-024-01646-7
Gangadoo, S., Owen, S., Rajapaksha, P., Plaisted, K., Cheeseman, S., Haddara, H., Truong, V. K., Ngo, S. T., Vu, V. V., Cozzolino, D., Elbourne, A., Crawford, R., Latham, K., & Chapman, J. (2020). Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. Science of The Total Environment, 732, 138792. https://doi.org/10.1016/j.scitotenv.2020.138792
Gao, S., Huang, G., Zhang, P., Yin, J., Li, M., Huang, J., Zhao, K., & Han, D. (2024). Interactive effects of nanoplastics, multi-contaminants, and environmental conditions on prairie aquatic ecosystems: A factorial composite toxicity analysis within a Canadian context. Journal of Hazardous Materials, 479, 135652. https://doi.org/10.1016/j.jhazmat.2024.135652
Giri, S., Saha, T., & Maiti, M. (2024). Seed Priming: A Strategy to Mitigate Flooding Stress in Pulses. International Journal of Environment and Climate Change, 14(3), 42–55. https://doi.org/10.9734/ijecc/2024/v14i34018
Habumugisha, T., Zhang, Z., Uwizewe, C., Yan, C., Ndayishimiye, J. C., Rehman, A., & Zhang, X. (2024). Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. Ecotoxicology and Environmental Safety, 278, 116426. https://doi.org/10.1016/j.ecoenv.2024.116426
Hofmann, T., Henkel, C., Hueffer, T., & Castan, S. (2024). Why nanoplastics do not enhance the transport of contaminants in the critical zone. https://doi.org/10.5194/egusphere-egu24-6160
Hou, Y., Wang, Y., Zhang, Y., Lu, Z., Zhang, Z., Dong, Z., & Qiu, Y. (2025). Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. Journal of Environmental Sciences, 148, 541–552. https://doi.org/10.1016/j.jes.2024.01.029
Junaid, M., Hamid, N., Liu, S., Abbas, Z., Imran, M., Haider, M. R., Wang, B., Chen, G., Khan, H. K., Yue, Q., Xu, N., & Wang, J. (2024). Interactive impacts of photoaged micro(nano)plastics and co-occurring chemicals in the environment. Science of The Total Environment, 927, 172213. https://doi.org/10.1016/j.scitotenv.2024.172213
Liu, S., Junaid, M., Wang, C., & Wang, J. (2024). Eco-corona enhanced the interactive effects of nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonate in zebrafish embryos. Science of The Total Environment, 953, 176223. https://doi.org/10.1016/j.scitotenv.2024.176223
Liu, X., Liang, Y., Peng, Y., Meng, T., Xu, L., & Dong, P. (2022). Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. International Journal of Molecular Sciences, 23(17), 9860. https://doi.org/10.3390/ijms23179860
Mahmud, F., Sarker, D. B., Jocelyn, J. A., & Sang, Q.-X. A. (2024). Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells, 13(21), 1788. https://doi.org/10.3390/cells13211788
Maity, S., Biswas, C., Banerjee, S., Guchhait, R., Adhikari, M., Chatterjee, A., & Pramanick, K. (2021). Interaction of plastic particles with heavy metals and the resulting toxicological impacts: A review. Environmental Science and Pollution Research, 28(43), 60291–60307. https://doi.org/10.1007/s11356-021-16448-z
Müller, S., Fiutowski, J., Rasmussen, M. B., Balic Zunic, T., Rubahn, H.-G., & Posth, N. R. (2025). Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction. Science of The Total Environment, 964, 178529. https://doi.org/10.1016/j.scitotenv.2025.178529
Pradel, A., Ferreres, S., Veclin, C., El Hadri, H., Gautier, M., Grassl, B., & Gigault, J. (2021). Stabilization of Fragmental Polystyrene Nanoplastic by Natural Organic Matter: Insight into Mechanisms. ACS ES&T Water, 1(5), 1198–1208. https://doi.org/10.1021/acsestwater.0c00283
Qian, S., Zhang, H., Leite, W., Whitten, A., Zolnierczuk, P., & Zhang, Q. (2024). Perturbation of Nanoplastics on Biomembranes: Molecular Insights from Neutron Scattering. Chemistry. https://doi.org/10.26434/chemrxiv-2024-mwgqr
Ruan, J., Yang, J., Wang, X., Liang, C., Li, L., Zeng, Y., Wang, J., Li, Y., Huang, W., & Chen, C. (2024). Heteroaggregation kinetics of oppositely charged nanoplastics in aquatic environments: Effects of particle ratio, solution chemistry, and interaction sequence. Journal of Hazardous Materials, 475, 134857. https://doi.org/10.1016/j.jhazmat.2024.134857
Schefer, R. B., Armanious, A., & Mitrano, D. M. (2023). Eco-Corona Formation on Plastics: Adsorption of Dissolved Organic Matter to Pristine and Photochemically Weathered Polymer Surfaces. Environmental Science & Technology, 57(39), 14707–14716. https://doi.org/10.1021/acs.est.3c04180
Şengül, H., Bülbül, O., & Şen, E. H. (2024). Environmental Implications of Physicochemical Differences Between Environmental Nanoplastics and Their Commercial Forms. In Review. https://doi.org/10.21203/rs.3.rs-4254278/v1
Shukla, S., Khanna, S., & Khanna, K. (2025). Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicology Reports, 14, 101844. https://doi.org/10.1016/j.toxrep.2024.101844
Singh, N., Tiwari, E., Khandelwal, N., & Darbha, G. K. (2019). Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environmental Science: Nano, 6(10), 2968–2976. https://doi.org/10.1039/C9EN00557A
Swinnerton, S., Su, J., & Tsai, C. S. J. (2024). The emission and physicochemical properties of airborne microplastics and nanoplastics generated during the mechanical recycling of plastic via shredding. Scientific Reports, 14(1), 24755. https://doi.org/10.1038/s41598-024-73775-0
Tan, M.-M., Feng, L.-J., Bian, S.-Z., Duan, J.-L., Li, X.-H., Sun, X.-D., Sun, Y.-C., Wang, S.-G., & Yuan, X.-Z. (2024). Interaction of Dissolved Organic Matters and Microplastics Regulates the Transport of Microplastics in Saturated Porous Media. ACS ES&T Engineering, 4(5), 1230–1239. https://doi.org/10.1021/acsestengg.3c00615
Tang, D.-Y., Zheng, W.-L., Chen, G.-T.-Y., Chen, S.-L., Chen, Y., Zhao, X.-L., & Wang, H. (2024). [Effect of Water Components on Aggregation and Sedimentation of Polystyrene Nanoplastics]. Huan Jing Ke Xue= Huanjing Kexue, 45(2), 854–861. https://doi.org/10.13227/j.hjkx.202302026
Vazquez, C. I., Chang, H.-M., Gong, G.-C., Shiu, R.-F., & Chin, W.-C. (2024). Impacts of polystyrene nanoplastics on microgel formation from effluent organic matter. Science of The Total Environment, 954, 176209. https://doi.org/10.1016/j.scitotenv.2024.176209
Wang, J., Cong, J., Wu, J., Chen, Y., Fan, H., Wang, X., Duan, Z., & Wang, L. (2023). Nanoplastic-protein corona interactions and their biological effects: A review of recent advances and trends. TrAC Trends in Analytical Chemistry, 166, 117206. https://doi.org/10.1016/j.trac.2023.117206
Wang, S., AL-Hasni, N. S., Liu, Z., & Liu, A. (2024). Multifaceted Aquatic Environmental Differences between Nanoplastics and Microplastics: Behavior and Fate. Environment & Health, 2(10), 688–701. https://doi.org/10.1021/envhealth.4c00013
Wang, Y., Huang, Y., Fu, L., Wang, X., & Chen, L. (2024). Evaluation of nanoplastics-induced redox imbalance in cells, larval zebrafish, and daphnia magna with a superoxide anion radical fluorescent probe. Chemosphere, 356, 141829. https://doi.org/10.1016/j.chemosphere.2024.141829
Wang, Z., Pal, D., Pilechi, A., & Ariya, P. A. (2024). Nanoplastics in Water: Artificial Intelligence-Assisted 4D Physicochemical Characterization and Rapid In Situ Detection. Environmental Science & Technology, 58(20), 8919–8931. https://doi.org/10.1021/acs.est.3c10408
Xu, Y., Wang, X., Van Der Hoek, J. P., Liu, G., & Lompe, K. M. (2025). Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions. Environmental Science & Technology, 59(3), 1822–1834. https://doi.org/10.1021/acs.est.4c11540
Yu, Q., Nederstigt, T. A. P., Wang, Z., Wu, J., Bosker, T., Peijnenburg, W. J. G. M., & Vijver, M. G. (2024). Accumulation kinetics of polystyrene nano- and microplastics in the waterflea Daphnia magna and trophic transfer to the mysid Limnomysis benedeni. Environmental Pollution, 363, 125029. https://doi.org/10.1016/j.envpol.2024.125029
Zhang, P., Liu, Y., Zhang, L., Xu, M., Gao, L., & Zhao, B. (2022). The interaction of micro/nano plastics and the environment: Effects of ecological corona on the toxicity to aquatic organisms. Ecotoxicology and Environmental Safety, 243, 113997. https://doi.org/10.1016/j.ecoenv.2022.113997
Zhang, X., Shen, Z., Wu, J., Su, M., Zheng, L., Xie, M., Hong, H., Huang, X., & Lu, H. (2024). High salinity restrains microplastic transport and increases the risk of pollution in coastal wetlands. Water Research, 267, 122463. https://doi.org/10.1016/j.watres.2024.122463
Zhao, Z., Yao, J., Li, H., Lan, J., Bao, Y., Zhao, L., Zong, W., Long, Y., Feng, L., Hollert, H., & Zhao, X. (2024). Binding of Perfluoroalkyl Substances to Nanoplastic Protein Corona Is pH‐Dependent and Attenuates Their Bioavailability and Toxicity. Small Science, 4(12), 2470055. https://doi.org/10.1002/smsc.202470055
Zhu, J., Miao, G., Jiang, H., Su, H., Wang, Y., Chen, L., Zhang, J., & Wang, Y. (2024). Polystyrene nanoplastics at predicted environmental concentrations enhance the toxicity of copper on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 282, 116749. https://doi.org/10.1016/j.ecoenv.2024.116749