Main Article Content
Abstract
Tropospheric ozone is the second most crucial air pollutant formed by photochemical reactions. This review aims to investigate the effects of ozone stress on major crops (wheat, rice, soybeans, and maize) and to identify mitigation and adaptation strategies. Ozone damages cellular structures, disrupts photosynthesis, and affects water regulation. Wheat is the most sensitive to ozone pollution, followed by soybeans, rice, and maize. One of the most sustainable ways to protect against ozone stress is to develop ozone-tolerant varieties. Chemical Protestants such as Ethylenediurea have been effective preservatives against ozone pollution. Policymakers and researchers must work together to develop science-based strategies that can reduce emissions, increase crop resilience, and protect global food supplies.
Keywords
Article Details
Copyright (c) 2026 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284–2296. https://doi.org/10.1016/j.atmosenv.2010.11.045
- Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO₂]: Mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661. https://doi.org/10.1146/annurev-arplant-042110-103829
- Ainsworth, E. A. (2017). Understanding and improving global crop response to ozone pollution. The Plant Journal, 90(5), 886–897. https://doi.org/10.1111/tpj.13298
- Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA. )2010(. Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ. 33:1569–81. https://doi.org/10.1111/j.1365-3040.2010.02165.x
- Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., Manning, W., Krupa, S., Chappelka, A., & Grantz, D. (2009). The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51(4), 337–351. https://doi.org/10.1111/j.1744-7909.2008.00805.x
- Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V . (2014). Global distribution and trends of tropospheric ozone: an observation–based review. Elementa: Science of the Anthropocene, 2:000029. https://doi.org/10.12952/journal.elementa.000029
- Emberson, L.D., Büker, P., Ashmore, M.R., Mills, G., Jackson, L.S., M. Agrawal, M., M.D. Atikuzzaman, M.D., Cinderby, S., Engardt, M., Jamir, C., Kobayashi, K., N.T.K. Oanh, N.T.K., Q.F. Quadir, Q.F., and A. Wahid. (2009). A comparison of North American and Asian exposure-response data for ozone effects on crop yields. Atmos. Environ. 43, 1945–1953. DOI: 10.1016/j.atmosenv.2009.01.005
- Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., & Tuovinen, J. P. (2000). Modelling stomatal ozone flux across Europe. Environmental Pollution, 109(3), 403-413. https://doi.org/10.1016/S0269-7491(00)00043-9[7]
- Food and Agriculture Organization of the United Nations (FAO). (2017). The future of food and agriculture: Trends and challenges. http://www.fao.org/3/a-i6583e.pdf
- Feng, Z., Kobayashi, K., & Ainsworth, E. A. (2010). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Global Change Biology, 16(1), 269-280. https://doi.org/10.1111/j.1365-2486.2009.02001.x
- Fiscus, E.L., Booker, F.L., and Burkey, K.O. (2005). Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 28: 997-101. DOI: 10.1111/j.1365-3040.2005.01349.x
- Feng, Z., Wang, S., Szantoi, Z., Chen, S., & Wang, X. (2015). Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environmental Pollution, 193, 296-301. https://doi.org/10.1016/j.envpol.2014.06.005
- Frei, M., Tanaka, J.P. and Wissuwa, M. (2008). Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J. Exp. Bot. 59, 3741–3752. DOI: 10.1093/jxb/ern218
- Fuhrer, J. (2009). Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96, 173–194. https://doi.org/10.1007/s00114-008-0468-9
- Heagle, A. S., Miller, J. E., & Pursley, W. A. (1998). Growth and yield responses of winter wheat to mixtures of ozone and carbon dioxide. Crop Science, 38(6), 1388-1394. https://doi.org/10.2135/cropsci1998.0011183X003800010021x
- Iyer, G., Horowitz, L. W., Trainer, M., Naresh, K., & David, L. M. (2013). Modeling the regional impacts of the Clean Air Act Amendments on ozone and particulate matter over the United States. Journal of the Air & Waste Management Association, 63(2), 179–194. https://doi.org/10.1080/10962247.2012.738633
- Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton University Press.
- Kovalchuk, I., Kovalchuk, O., & Hohn, B. (2001). Biomonitoring the genotoxicity of environmental factors with transgenic plants. Trends in Plant Science, 6(7), 306–310. https://doi.org/10.1016/S1360-1385(01)01993-0[9]
- Lu, X., Zhang, L., Wang, X., Gao, M., Li, K., Zhang, Y., Yue, X., & Zhang, Y. (2018). Rapid increases in warm-season surface ozone and resulting health impacts in China since 2013. Environmental Science & Technology Letters, 5(8), 487-494. https://doi.org/10.1021/acs.estlett.8b00327
- Overmyer, K., Brosché, M., & Kangasjärvi, J. (2005). Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 8(7), 335-342. https://doi.org/10.1016/S1360-1385(03)00135-3[7]
- Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Uddling, J., Broberg, M., Feng, Z., Kobayashi, K., & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 24(10), 4869–4893. https://doi.org/10.1111/gcb.14381
- Manning, W. J. (2005). Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: Progress and an experimental approach. Environmental Pollution, 137(3): 443-454. https://doi.org/10.1016/j.envpol.2005.01.034
- Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.(2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015.
- Morgan, P.B., Ainsworth, E.A. and Long, S.P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26, 1317–1328. https://doi.org/10.1046/j.0016-8025.2003.01056.x
- Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1): 249-279. DOI: 10.1146/annurev.arplant.49.1.249. DOI: 10.1146/annurev.arplant.49.1.249
- Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M.R., and Mills. G. )2007(. Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux–response relationships for European wheat and potato. Atmos. Environ., 41: 3022-3040. https://doi.org/10.1016/j.atmosenv.2006.12.002
- Rao, M. V., Hale, B. A., & Ormrod, D. P. (2013). Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes). Plant Physiology, 161(1), 384–393. https://doi.org/10.1104/pp.113.227546
- Shang, B., Deng, T., Chen, H., Xu, Y., & Feng, Z. (2024). Effects of elevated ozone on physiology, growth, yield and grain quality of rice (Oryza sativa L.): An ozone gradient experiment. Agriculture, Ecosystems & Environment, 363, 108858. https://doi.org/10.1016/j.agee.2023.108858
- Schnell, J. L. (2016). The influence of mid-latitude ozone extremes on crop productivity. Atmospheric Environment, 146, 126–135. https://doi.org/10.1016/j.atmosenv.2016.05.052
- Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., ... Tarasick, D. (2017). Tropospheric ozone assessment report: Database and metrics data of global surface ozone observations. Elementa: Science of the Anthropocene, 5, 58. https://doi.org/10.1525/elementa.244
- Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S., & Colls, J. J. (2009). Effects of climate change on crop production in Cameroon. Climate Research, 39(1), 65–77. https://doi.org/10.3354/cr00784
- Van Dingenen, R., Raes, F., Krol, M.C., Emberson, L. and Cofala, J. (2009) The global impact of O3 on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43, 604–618. https://doi.org/10.1016/j.atmosenv.2008.10.033
- Vainonen, J.P. and Kangasjärvi, J. (2015). Plant signaling in acute ozone exposure. Plant Cell Environ. 38, 240–252. DOI: 10.1111/pce.12273
- Velissariou, D., Barnes, J., Davison, A., & Pfirrmann, T. (1992). Effects of air pollution on Pinus halepensis (Mill.): Pollution levels in Attica, Greece. Atmospheric Environment, 26(3), 373-380. https://doi.org/10.1016/0960-1686(92)90072-7[10]
- U.S. Environmental Protection Agency (US-EPA). (2020). Integrated science assessment (ISA) for ozone and related photochemical oxidants (EPA/600/R20/012). https://www.epa.gov/isa/integrated-science-assessment-isa-ozone-and-related-photochemical-oxidants.
- Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, G., & Liu, X. (2012). Process-based modeling of the impacts of ozone pollution on the photosynthesis and yield of winter wheat in China. Environmental Pollution, 162, 223-233. https://doi.org/10.1016/j.envpol.2011.11.012
- Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., & Long, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Global Change Biology, 15(2), 396-424. DOI: 10.1111/j.1365-2486.2008.01774.x
- Young, P.J., Archibald, A.T., Bowman, K.W. et al. (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090. https://doi.org/10.5194/acp-13-2063-2013
- Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., ... Zeng, G. (2013). Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(4), 2063–2090. https://doi.org/10.5194/acp-13-2063-2013
- Zhu, J., & Liang, X.-Z. (2013). Impacts of the Bermuda high on regional climate and ozone over the United States. Journal of Climate, 26(3), 1018–1032. https://doi.org/10.1175/JCLI-D-12-00170.1
- Yoshida, K., Irie, H., Kato, S., Chatani, S., & Morino, Y. (2009). Effects of ozone on the growth and yield of rice (Oryza sativa L.) under different nitrogen fertilization regimes. Environmental Pollution, 157(1), 206–212. https://doi.org/10.1016/j.envpol.2008.08.018
- Zhang, Y., Sun, J., & Feng, Z. (2012). Effects of ozone pollution on yield and quality of winter wheat under flixible sowing dates. Atmospheric Environment, 55: 339-345. DOI: 10.1016/j.atmosenv.2011.12.062
- Link: https://doi.org/10.1016/j.atmosenv.2011.12.062
- Zhou, X., Fu, Y., & Wang, Q. (2011). Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biology, 17(8), 2697–2706. https://doi.org/10.1111/j.1365-2486.2011.02415.x
References
Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284–2296. https://doi.org/10.1016/j.atmosenv.2010.11.045
Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO₂]: Mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661. https://doi.org/10.1146/annurev-arplant-042110-103829
Ainsworth, E. A. (2017). Understanding and improving global crop response to ozone pollution. The Plant Journal, 90(5), 886–897. https://doi.org/10.1111/tpj.13298
Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA. )2010(. Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ. 33:1569–81. https://doi.org/10.1111/j.1365-3040.2010.02165.x
Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., Manning, W., Krupa, S., Chappelka, A., & Grantz, D. (2009). The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51(4), 337–351. https://doi.org/10.1111/j.1744-7909.2008.00805.x
Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V . (2014). Global distribution and trends of tropospheric ozone: an observation–based review. Elementa: Science of the Anthropocene, 2:000029. https://doi.org/10.12952/journal.elementa.000029
Emberson, L.D., Büker, P., Ashmore, M.R., Mills, G., Jackson, L.S., M. Agrawal, M., M.D. Atikuzzaman, M.D., Cinderby, S., Engardt, M., Jamir, C., Kobayashi, K., N.T.K. Oanh, N.T.K., Q.F. Quadir, Q.F., and A. Wahid. (2009). A comparison of North American and Asian exposure-response data for ozone effects on crop yields. Atmos. Environ. 43, 1945–1953. DOI: 10.1016/j.atmosenv.2009.01.005
Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., & Tuovinen, J. P. (2000). Modelling stomatal ozone flux across Europe. Environmental Pollution, 109(3), 403-413. https://doi.org/10.1016/S0269-7491(00)00043-9[7]
Food and Agriculture Organization of the United Nations (FAO). (2017). The future of food and agriculture: Trends and challenges. http://www.fao.org/3/a-i6583e.pdf
Feng, Z., Kobayashi, K., & Ainsworth, E. A. (2010). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Global Change Biology, 16(1), 269-280. https://doi.org/10.1111/j.1365-2486.2009.02001.x
Fiscus, E.L., Booker, F.L., and Burkey, K.O. (2005). Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 28: 997-101. DOI: 10.1111/j.1365-3040.2005.01349.x
Feng, Z., Wang, S., Szantoi, Z., Chen, S., & Wang, X. (2015). Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environmental Pollution, 193, 296-301. https://doi.org/10.1016/j.envpol.2014.06.005
Frei, M., Tanaka, J.P. and Wissuwa, M. (2008). Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J. Exp. Bot. 59, 3741–3752. DOI: 10.1093/jxb/ern218
Fuhrer, J. (2009). Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96, 173–194. https://doi.org/10.1007/s00114-008-0468-9
Heagle, A. S., Miller, J. E., & Pursley, W. A. (1998). Growth and yield responses of winter wheat to mixtures of ozone and carbon dioxide. Crop Science, 38(6), 1388-1394. https://doi.org/10.2135/cropsci1998.0011183X003800010021x
Iyer, G., Horowitz, L. W., Trainer, M., Naresh, K., & David, L. M. (2013). Modeling the regional impacts of the Clean Air Act Amendments on ozone and particulate matter over the United States. Journal of the Air & Waste Management Association, 63(2), 179–194. https://doi.org/10.1080/10962247.2012.738633
Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton University Press.
Kovalchuk, I., Kovalchuk, O., & Hohn, B. (2001). Biomonitoring the genotoxicity of environmental factors with transgenic plants. Trends in Plant Science, 6(7), 306–310. https://doi.org/10.1016/S1360-1385(01)01993-0[9]
Lu, X., Zhang, L., Wang, X., Gao, M., Li, K., Zhang, Y., Yue, X., & Zhang, Y. (2018). Rapid increases in warm-season surface ozone and resulting health impacts in China since 2013. Environmental Science & Technology Letters, 5(8), 487-494. https://doi.org/10.1021/acs.estlett.8b00327
Overmyer, K., Brosché, M., & Kangasjärvi, J. (2005). Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 8(7), 335-342. https://doi.org/10.1016/S1360-1385(03)00135-3[7]
Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Uddling, J., Broberg, M., Feng, Z., Kobayashi, K., & Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 24(10), 4869–4893. https://doi.org/10.1111/gcb.14381
Manning, W. J. (2005). Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: Progress and an experimental approach. Environmental Pollution, 137(3): 443-454. https://doi.org/10.1016/j.envpol.2005.01.034
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.(2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015.
Morgan, P.B., Ainsworth, E.A. and Long, S.P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26, 1317–1328. https://doi.org/10.1046/j.0016-8025.2003.01056.x
Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1): 249-279. DOI: 10.1146/annurev.arplant.49.1.249. DOI: 10.1146/annurev.arplant.49.1.249
Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M.R., and Mills. G. )2007(. Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux–response relationships for European wheat and potato. Atmos. Environ., 41: 3022-3040. https://doi.org/10.1016/j.atmosenv.2006.12.002
Rao, M. V., Hale, B. A., & Ormrod, D. P. (2013). Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes). Plant Physiology, 161(1), 384–393. https://doi.org/10.1104/pp.113.227546
Shang, B., Deng, T., Chen, H., Xu, Y., & Feng, Z. (2024). Effects of elevated ozone on physiology, growth, yield and grain quality of rice (Oryza sativa L.): An ozone gradient experiment. Agriculture, Ecosystems & Environment, 363, 108858. https://doi.org/10.1016/j.agee.2023.108858
Schnell, J. L. (2016). The influence of mid-latitude ozone extremes on crop productivity. Atmospheric Environment, 146, 126–135. https://doi.org/10.1016/j.atmosenv.2016.05.052
Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., ... Tarasick, D. (2017). Tropospheric ozone assessment report: Database and metrics data of global surface ozone observations. Elementa: Science of the Anthropocene, 5, 58. https://doi.org/10.1525/elementa.244
Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S., & Colls, J. J. (2009). Effects of climate change on crop production in Cameroon. Climate Research, 39(1), 65–77. https://doi.org/10.3354/cr00784
Van Dingenen, R., Raes, F., Krol, M.C., Emberson, L. and Cofala, J. (2009) The global impact of O3 on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43, 604–618. https://doi.org/10.1016/j.atmosenv.2008.10.033
Vainonen, J.P. and Kangasjärvi, J. (2015). Plant signaling in acute ozone exposure. Plant Cell Environ. 38, 240–252. DOI: 10.1111/pce.12273
Velissariou, D., Barnes, J., Davison, A., & Pfirrmann, T. (1992). Effects of air pollution on Pinus halepensis (Mill.): Pollution levels in Attica, Greece. Atmospheric Environment, 26(3), 373-380. https://doi.org/10.1016/0960-1686(92)90072-7[10]
U.S. Environmental Protection Agency (US-EPA). (2020). Integrated science assessment (ISA) for ozone and related photochemical oxidants (EPA/600/R20/012). https://www.epa.gov/isa/integrated-science-assessment-isa-ozone-and-related-photochemical-oxidants.
Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, G., & Liu, X. (2012). Process-based modeling of the impacts of ozone pollution on the photosynthesis and yield of winter wheat in China. Environmental Pollution, 162, 223-233. https://doi.org/10.1016/j.envpol.2011.11.012
Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., & Long, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Global Change Biology, 15(2), 396-424. DOI: 10.1111/j.1365-2486.2008.01774.x
Young, P.J., Archibald, A.T., Bowman, K.W. et al. (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090. https://doi.org/10.5194/acp-13-2063-2013
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., ... Zeng, G. (2013). Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(4), 2063–2090. https://doi.org/10.5194/acp-13-2063-2013
Zhu, J., & Liang, X.-Z. (2013). Impacts of the Bermuda high on regional climate and ozone over the United States. Journal of Climate, 26(3), 1018–1032. https://doi.org/10.1175/JCLI-D-12-00170.1
Yoshida, K., Irie, H., Kato, S., Chatani, S., & Morino, Y. (2009). Effects of ozone on the growth and yield of rice (Oryza sativa L.) under different nitrogen fertilization regimes. Environmental Pollution, 157(1), 206–212. https://doi.org/10.1016/j.envpol.2008.08.018
Zhang, Y., Sun, J., & Feng, Z. (2012). Effects of ozone pollution on yield and quality of winter wheat under flixible sowing dates. Atmospheric Environment, 55: 339-345. DOI: 10.1016/j.atmosenv.2011.12.062
Link: https://doi.org/10.1016/j.atmosenv.2011.12.062
Zhou, X., Fu, Y., & Wang, Q. (2011). Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biology, 17(8), 2697–2706. https://doi.org/10.1111/j.1365-2486.2011.02415.x