Main Article Content

Abstract

Variations in meteorological elements, particularly precipitation, are among the most essential characteristics of atmospheric and hydrological systems. Drought, as one of the most hazardous natural phenomena, can cause extensive negative impacts on society and the environment depending on its intensity and duration; therefore, its assessment is of great importance. This study aims to analyze drought conditions in the North River Basin using statistical approaches. The Standardized Precipitation Index (SPI) was applied, and the Normal and Log-Normal SPI results were compared. The analysis was based on precipitation data from 13 stations spanning 1979–2022. The results indicate that eight moderate drought events and one severe drought event occurred during the study period. Furthermore, the return periods of mild, severe, and extremely severe droughts were estimated at approximately 2–3, 10–15, and 20–25 years, respectively. In addition, a notable decrease in precipitation associated with climate change has been observed in the basin.

Keywords

Precipitation Drought Vibration Period Water Resources North River Basin

Article Details

How to Cite
Hassanzay, F., Reshteen, S., & Rahmatzai, A. (2026). Assessment of Drought Impacts in the North River Basin. Journal of Natural Sciences – Kabul University, 8(Special Issue), 207–240. https://doi.org/10.62810/jns.v8iSpecial Issue.507

References

  1. تیم کاری بانک جهانی. (2021). هوا، اقلیم و منابع آب در افغانستان، اطلس خدمات ملی هایدرولوژی و هواشناسي. بانک جهانی.
  2. رشتین, ص. و صافی, ع. (1403). د اوبو مدیریت او کاری فرصتونه. Journal of Natural Sciences – Kabul University, 7(4), 71–88. https://doi.org/10.62810/jns.v7i4.75
  3. رشتین، ص. (1397). رژیم بارندگی استیشن جلال‌آباد. مجله علوم طبیعی پوهنتون کابل.
  4. رشتین، ص و صافی، ع. (1393). پیش‌بینی خشکسالی در حوزۀ دریایی کابل. مجله علوم طبیعی پوهنتون کابل.
  5. طرزالعمل چهارچوب مديريت منابع آب در حوزه هاي دریائی (1390).. وزارت انرژي و آب.
  6. Hinis, M. A., & Geyikli, M. S. (2023). Accuracy Evaluation of Standardized Precipitation Index (SPI) Estimation under Conventional Assumption in Yeşilırmak, Kızılırmak, and Konya Closed Basins, Turkey. Advances in Meteorology, 2023, 1–13. https://doi.org/10.1155/2023/5142965
  7. IMPACT Initiatives. (2024). Key Insights on the impact of repeated droughts on Water, Food Security, and Displacement. https://www.impact-initiatives.org/stories/afghanistan-key-insights-on-the-impact-of-repeated-droughts-on-water-food-security-and-displacement/
  8. McKee, T., B., D., Doesken, N. J., & Kleist, J. (1995). Drought Monitoring with Multiple Time Scales. In Proceedings of the Ninth Conference on Applied Climatology. American Meteorological Society, 233–236. https://www.scirp.org/reference/referencespapers?referenceid=2884556
  9. Mozafari Gholam Ali, Khosravi Younes, Abbasi Esmaeil, & Tavakoli Fatemeh. (2011). Assessment of Geostatistical Methods for Spatial Analysis of SPI and EDI Drought Indices. World Applied Sciences Journal, 15(4), 474–482. https://www.researchgate.net/publication/266891163_Assessment_of_Geostatistical_Methods_for_Spatial_Analysis_of_SPI_and_EDI_Drought_Indices
  10. Nadi, M., & Shiukhy Soqanloo, S. (2023). Modification of standardized precipitation index in different climates of Iran. Meteorological Applications, 30(5). https://doi.org/10.1002/met.2155
  11. Pieper, P., Düsterhus, A., & Baehr, J. (2020). A universal Standardized Precipitation Index candidate distribution function for observations and simulations. Hydrology and Earth System Sciences, 24(9), 4541–4565. https://doi.org/10.5194/hess-24-4541-2020
  12. Qutbudin, I., Shiru, M. S., Sharafati, A., Ahmed, K., Al-Ansari, N., Yaseen, Z. M., Shahid, S., & Wang, X. (2019). Seasonal Drought Pattern Changes Due to Climate Variability: Case Study in Afghanistan. Water, 11(5), 1096. https://doi.org/10.3390/w11051096
  13. Rahmani, H. (2024). Innovative Approaches for Afghanistan’s Agricultural Water Management. Journal of Natural Science Review, 2(Special.Issue), 64–71. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.116
  14. Reshteen, S., Rahmatzai, A., & Safi, A. G. (2024). Urban Water Crisis in Kabul City: Key Challenges and Solutions. Journal of Natural Science Review, 2(3), 138–150. https://doi.org/10.62810/jnsr.v2i3.51
  15. Shokory, J. A. N., Schaefli, B., & Lane, S. N. (2023). Water resources of Afghanistan and related hazards under rapid climate warming: a review. Hydrological Sciences Journal, 68(3), 507–525. https://doi.org/10.1080/02626667.2022.2159411
  16. Sidiqi, M., Kasiviswanathan, K. S., Scheytt, T., & Devaraj, S. (2023). Assessment of Meteorological Drought under the Climate Change in the Kabul River Basin, Afghanistan. Atmosphere, 14(3), 570. https://doi.org/10.3390/atmos14030570
  17. UNDP. (2017). Climate Change Scenarios for Agriculture of Afghanistan, Climate Change Adaptation Project. https://www.undp.org/afghanistan/publications/climate-change-scenarios-agriculture-afghanistan
  18. Wang, W., Wang, J., & Romanowicz, R. (2021). Uncertainty in SPI Calculation and its Impact on Drought Assessment in Different Climate Regions over China. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-20-0256.1
  19. Water conservation in Afghanistan / Abdullah Aini. (2007). Afghanistan Centre at Kabul University. https://doi.org/10.29171/azu_acku_pamphlet_hd1698_a3_a565_2007
  20. Wikipedia. (2025). Qosh Tepa Canal. In Wikipedia – The Free Encyclopedia.