Main Article Content
Abstract
Some aquatic plants have a remarkable ability to absorb and accumulate heavy metals, which can be utilized in reducing water pollution. In this review, we assessed the utilization of aquatic macrophytes, specifically water hyacinth (Eichhornia crassipes), for heavy metal cleanup and sustainable wastewater treatment. After screening 12 databases, such as PubMed, Scopus, Web of Science, and ScienceDirect for the period 2019-2024, we reviewed 112 studies. Bibliometric analysis using VOS viewer (v1. 6. 18), which revealed the main research trends, citation networks and thematic clusters. The produced results suggest that (i) the water hyacinth has a high capacity of cadmium accumulation (166.25 ppm dry weight), but is very effective for the removal of lead, mercury, arsenic, and nickel. Other macrophytes, including Lemna minor, Pistia stratiotes, and Hydrilla verticillata, also have a considerable extent of chromium, copper, and zinc removed. While exposure to metals imposes physiological stress, the aquatic plants act as symptoms, causing low-cost, eco-friendly phytoremediation agents.
Keywords
Article Details
Copyright (c) 2026 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Åström, F., & Greger, M. (2003). Aquatic and terrestrial plant species with the potential to remove heavy metals from stormwater. International Journal of Phytoremediation, 5(3), 211–224. https://doi.org/10.1080/713779178
- Ahamad, F., Chauhan, A., Chauhan, P. K., Upadhyay, S. K., Tomar, A., Singh, N., & Andrade, T. (2025). Addressing complex challenges in water quality management: Emerging technologies and sustainable strategies. Computational Automation for Water Security, 251–276. https://doi.org/10.1016/B978-0-443-33321-7.00003-2
- Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305
- Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
- Alloway, B. J. (Ed.). (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media. https://doi.org/10.1007/978-94-007-4470-7
- Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research, 46(4), 371–376. https://doi.org/10.1016/j.ejar.2020.10.002
- Basharat, Z., Novo, L., & Yasmin, A. (2018). Genome editing weds CRISPR: What is in it for phytoremediation? Plants, 7(3), 51. https://doi.org/10.3390/plants7030051
- Chauhan, A., Tomar, A., Attri, S., Sethi, M., Prabhat, Upadhyay, S. K., & Chauhan, P. K. (2025). Application of modern tools for the real-time monitoring of bioremediation approach and its advantages. In A. L. Srivastav, I. Zinicovscaia, & L. Cepoi (Eds.), Biotechnologies for wastewater treatment and resource recovery: Current trends and future scope (pp. 255–266). Elsevier. https://doi.org/10.1016/B978-0-443-27376-6.00018-9
- Chen, G., Huang, J., Fang, Y., Zhao, Y., Tian, X., Jin, Y., & Zhao, H. (2018). Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in Dianchi Lake basin. Bioresource Technology, 276, 8–17. https://doi.org/10.1016/j.biortech.2018.03.121
- Cheng, P., Yihao, S., Wu, X., Yuan, P., Jiang, L., Chen, S., ... & Xinshan, S. (2020). Heavy metals, nitrogen, and phosphorus in sediments from the first drinking water reservoir supplied by the Yangtze River in Shanghai, China: Spatial distribution characteristics and pollution risk assessment. Water, Air, and Soil Pollution, 231(6). https://doi.org/10.1007/s11270-020-04589-6
- Cristaldi, A., Conti, G., Jho, E., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs: A brief review. Environments, 4(7), 309–326. https://doi.org/10.3390/environments8070309
- Das, S., Das, A., Parsha, E., Mazumder, T., Paul, R., & Das, S. (2021). Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation. International Journal of Phytoremediation, 23(10), 1035–1044. https://doi.org/10.1080/15226514.2021.1895714
- Ding, G., Li, C., Han, X., Chi, C., Zhang, D., & Liu, B. (2015). Effects of lead on ultrastructure of Isoetes sinensis Palmer (Isoetaceae), a critically endangered species in China. PLoS ONE, 10(10), e0139231. https://doi.org/10.1371/journal.pone.0139231
- Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793
- Edo, C., Fernández-Alba, A. R., Vejsnæs, F., Van der Steen, J. J., Fernández-Piñas, F., & Rosal, R. (2021). Honeybees as active samplers for microplastics. Science of the Total Environment, 767, 144481. https://doi.org/10.1016/j.scitotenv.2020.144481
- Ely, C., & Smets, B. (2017). Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizo-degradation. International Journal of Phytoremediation, 19(10), 877–883. https://doi.org/10.1080/15226514.2017.1303805
- Galal, T. M., Eid, E. M., Dakhil, M. A., & Hassan, L. M. (2018). Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. International Journal of Phytoremediation, 20, 440–447. https://doi.org/10.1080/15226514.2017.1365343
- García-Sánchez, M., Košnář, Z., Mercl, F., Aranda, E., & Tlustoš, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 147, 165–174. https://doi.org/10.1016/j.ecoenv.2017.08.050
- Goala, M., Bachheti, A., & Kumar, V. (2025). A comprehensive review of recent advances in phytoremediation of wastewaters using Azolla species. 3 Biotech, 15(8), 238. https://doi.org/10.1007/s13205-025-04399
- Gopal, B. (2003). Perspectives on wetland science, application, and policy. Hydrobiologia, 490, 1–10. https://doi.org/10.1023/A:1023418911648
- Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227, 428–443. https://doi.org/10.1016/j.envpol.2017.04.060
- Guittonny-Philippe, A., Petit, M. E., Masotti, V., Monnier, Y., Malleret, L., Coulomb, B., & Laont-Schwob, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management, 147, 108–123. https://doi.org/10.1016/j.jenvman.2014.09.009
- Ha, N. T. H., & Anh, B. T. K. (2017). The removal of heavy metals by iron mine drainage sludge and Phragmites australis. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 71, 012022. IOP Publishing. https://doi.org/10.1088/1755-1315/71/1/012022
- Hempel, M., Botté, S. E., Negrin, V. L., Chiarello, M. N., & Marcovecchio, J. E. (2008). The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca estuary salt marshes. Journal of Soils and Sediments, 8, 289. https://doi.org/10.1007/s11368-008-0027-z
- Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., & Yousaf, S. (2018). Combined application of biochar, compost and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80–88. https://doi.org/10.1016/j.envexpbot.2018.05.009
- Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2018). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environmental Geochemistry and Health, 40, 59–85. https://doi.org/10.1007/s10653-017-9908-8
- Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart. Solms). Journal of Applied Sciences and Environmental Management, 14(2), 43–49. https://doi.org/10.4314/jasem.v14i2.57834
- Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
- Kansal, D., Gururani, P., Joshi, N. C., Pant, G., & Chauhan, A. (2025). A comprehensive review on utilization of cavitation technology for industrial waste water treatment: A step toward sustainability. Water, Air, and Soil Pollution, 236(7), 438. https://doi.org/10.1007/s11270-025-08053-4
- Koul, B., Sharma, K., & Shah, M. P. (2022). Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology & Innovation, 25, 102040. https://doi.org/10.1016/j.eti.2021.102040
- Kumar, S., Yadav, R., & Sharma, N. (2025). Comparative analysis of conventional and green technologies for heavy metal removal from water. Environmental Science & Solutions, 18(2), 88–97. https://doi.org/10.4321/ess.2025.180203
- Kutty, S., Ngatenah, S., Isa, M., & Malakahmad, A. (2009). Nutrient removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. World Academy of Science, Engineering and Technology, 60, 1115–1123. https://doi.org/10.5281/zenodo.1056273
- Lanasa, S., Niedzwiecki, M., Reber, K. P., East, A., Sivey, J. D., & Salice, C. J. (2022). Comparative toxicity of herbicide active ingredients, safener additives, and commercial formulations to the nontarget alga Raphidocelis subcapitata. Environmental Toxicology and Chemistry, 41(6), 1466–1476. https://doi.org/10.1002/etc.5327
- Leguizamo, M. A. O., Gómez, W. D. F., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230–1247. https://doi.org/10.1016/j.chemosphere.2016.10.073
- Leung, H., Wang, Z., Ye, Z., Yung, K., Peng, X., & Cheung, K. (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere, 23(5), 549–563. https://doi.org/10.1016/S1002-0160(13)60047-8
- Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 18, 978–986. https://doi.org/10.1007/s11356-011-0458-8
- Maine, M. A., Duarte, M. V., & Suñé, N. L. (2001). Cadmium uptake by floating macrophytes. Water Research, 35, 2629–2634. https://doi.org/10.1016/S0043-1354(00)00557-1
- Maine, M. A., Suñé, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501. https://doi.org/10.1016/j.watres.2003.12.025
- Mendoza, R. E., García, I. V., de Cabo, L., Weigandt, C. F., & de Iorio, A. F. (2015). The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Science of the Total Environment, 505, 555–564. https://doi.org/10.1016/j.scitotenv.2014.10.019
- Mesa, J., Mateos-Naranjo, E., Caviedes, M., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. (2015). Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 90, 150–159. https://doi.org/10.1016/j.marpolbul.2014.11.002
- Mondou, M., Maguire, S., Pain, G., Crump, D., Hecker, M., Basu, N., & Hickey, G. M. (2021). Envisioning an international validation process for new approach methodologies in chemical hazard and risk assessment. Environmental Advances, 4, 100061. https://doi.org/10.1016/j.envadv.2021.100061
- Mousavi-Kouhi, S. M. (2025). Phytoremediation of nanoparticles, as future water pollutants, using aquatic and wetland plants: Feasibility, benefits and risks, and research gaps. Environmental Science and Pollution Research, 32(11), 6287–6316. https://doi.org/10.1007/s11356-025-36135-7
- Muthusaravanan, S., Sivarajasekar, N., Vivek, J., Paramasivan, T., Naushad, M., Prakashmaran, J., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: Mechanisms, methods, and enhancements. Environmental Chemistry Letters, 16, 1339–1359. https://doi.org/10.1007/s10311-018-0762-3
- Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
- Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence, and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8
- Naidu, R., Biswas, B., Willett, I. R., Cribb, J., Kumar Singh, B., Paul Nathanail, C., Coulon, F., Semple, K. T., Jones, K. C., Barclay, A., & Aitken, R. J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 156, 106616. https://doi.org/10.1016/j.envint.2021.106616
- Peng, K., Luo, C., Lou, L., Li, X., & Shen, Z. (2008). Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq and their potential use for contamination indicators and in wastewater treatment. Science of the Total Environment, 392, 22–29. https://doi.org/10.1016/j.scitotenv.2007.11.032
- Rai, U., Tripathi, R., Vajpayee, P., Pandey, N., Ali, M., & Gupta, D. (2003). Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus L. (Potamogetonaceae). Bulletin of Environmental Contamination and Toxicology, 70, 566–575. https://doi.org/10.1007/s00128-003-0043-3
- Said, M., Cassayre, L., Dirion, J. L., Nzihou, A., & Joulia, X. (2015). Behavior of heavy metals during gasification of phytoextraction plants: Thermochemical modelling. Computer Aided Chemical Engineering, 37, 341–346.
- Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721.https://doi.org/10.1016/j.chemosphere.2016.12.020
- Sayanthan, S., Hasan, H. A., & Abdullah, S. R. S. (2024). Floating aquatic macrophytes in wastewater treatment: Toward a circular economy. Water, 16(6), 870. https://doi.org/10.3390/w16060870
- Shi, J., Xiang, Z., Peng, T., Li, H., Huang, K., Liu, D., & Huang, T. (2021). Effects of melatonin-treated Nasturtium officinale on the growth and cadmium accumulation of subsequently grown rice seedlings. International Journal of Environmental Analytical Chemistry, 101(14), 2288–2296. https://doi.org/10.1080/03067319.2020.1825898
- Singh, A., & Patel, V. (2025). Heavy metal contamination in freshwater ecosystems: Sources, impacts, and remediation prospects. Global Journal of Aquatic Pollution, 9(1), 30–45. https://doi.org/10.5423/gjap.2025.90104
- Srivastava, A. K., Kumari, S., Singh, R. P., Khan, M., Mishra, P., & Xie, X. (2025). Harnessing the interplay of protein posttranslational modifications: Enhancing plant resilience to heavy metal toxicity. Microbiological Research, 128112. https://doi.org/10.1016/j.micres.2025.128112
- Stanikzai, K., Kumar, S., Dwivedi, S., & Chauhan, A. (2023). Phytoremediation of zinc and lead from the polluted soils using sunflower. Journal of Environmental Biology Science, 37, 119–126. https://doi.org/10.59467/JEBS.2023.37.119
- Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476. https://doi.org/10.3389/fpls.2018.01476
- Tee, P. F., Abdullah, M. O., Tan, I. A. W., Rashid, N. K. A., Amin, M. A. M., Nolasco-Hipolito, C., & Bujang, K. (2016). Review on hybrid energy systems for wastewater treatment and bio-energy production. Renewable and Sustainable Energy Reviews, 54, 235–246. https://doi.org/10.1016/j.rser.2015.10.011
- U.S. Environmental Protection Agency. (2021). Nutrient pollution: The effects: Environment. U.S. Environmental Protection Agency. https://www.epa.gov/nutrientpollution/effects-environment
- Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029
- Wang, J., Song, X., Wang, Y., Bai, J., Li, M., & Dong, G. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of the Total Environment, 607–608, 53–62. https://doi.org/10.1016/j.scitotenv.2017.06.243
- Wang, J., Zhu, Q., Shan, Y., Wang, Y., Song, X., & Lei, X. (2018). A comparative study on the efficiency of biodegradable EDDS and micro-electric field on the promotion of the phytoextraction by Commelina communis in Cu-contaminated soils. Geoderma, 314, 1-7. (no DOI available)
- Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-005-4669-0
- Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-004-0226-1.
- Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., & Li, S. (2021). Health and environmental effects of heavy metals. Journal of King Saud University - Science, 34(1), 101653. https://doi.org/10.1016/j.jksus.2021.101653
- Zhuang, Q., Wu, S., Yan, Y., Niu, Y., Yang, F., & Xie, C. (2020). Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. Science of the Total Environment, 710, 136336. https://doi.org/10.1016/j.scitotenv.2019.136336
References
Åström, F., & Greger, M. (2003). Aquatic and terrestrial plant species with the potential to remove heavy metals from stormwater. International Journal of Phytoremediation, 5(3), 211–224. https://doi.org/10.1080/713779178
Ahamad, F., Chauhan, A., Chauhan, P. K., Upadhyay, S. K., Tomar, A., Singh, N., & Andrade, T. (2025). Addressing complex challenges in water quality management: Emerging technologies and sustainable strategies. Computational Automation for Water Security, 251–276. https://doi.org/10.1016/B978-0-443-33321-7.00003-2
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305
Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
Alloway, B. J. (Ed.). (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media. https://doi.org/10.1007/978-94-007-4470-7
Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research, 46(4), 371–376. https://doi.org/10.1016/j.ejar.2020.10.002
Basharat, Z., Novo, L., & Yasmin, A. (2018). Genome editing weds CRISPR: What is in it for phytoremediation? Plants, 7(3), 51. https://doi.org/10.3390/plants7030051
Chauhan, A., Tomar, A., Attri, S., Sethi, M., Prabhat, Upadhyay, S. K., & Chauhan, P. K. (2025). Application of modern tools for the real-time monitoring of bioremediation approach and its advantages. In A. L. Srivastav, I. Zinicovscaia, & L. Cepoi (Eds.), Biotechnologies for wastewater treatment and resource recovery: Current trends and future scope (pp. 255–266). Elsevier. https://doi.org/10.1016/B978-0-443-27376-6.00018-9
Chen, G., Huang, J., Fang, Y., Zhao, Y., Tian, X., Jin, Y., & Zhao, H. (2018). Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in Dianchi Lake basin. Bioresource Technology, 276, 8–17. https://doi.org/10.1016/j.biortech.2018.03.121
Cheng, P., Yihao, S., Wu, X., Yuan, P., Jiang, L., Chen, S., ... & Xinshan, S. (2020). Heavy metals, nitrogen, and phosphorus in sediments from the first drinking water reservoir supplied by the Yangtze River in Shanghai, China: Spatial distribution characteristics and pollution risk assessment. Water, Air, and Soil Pollution, 231(6). https://doi.org/10.1007/s11270-020-04589-6
Cristaldi, A., Conti, G., Jho, E., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs: A brief review. Environments, 4(7), 309–326. https://doi.org/10.3390/environments8070309
Das, S., Das, A., Parsha, E., Mazumder, T., Paul, R., & Das, S. (2021). Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation. International Journal of Phytoremediation, 23(10), 1035–1044. https://doi.org/10.1080/15226514.2021.1895714
Ding, G., Li, C., Han, X., Chi, C., Zhang, D., & Liu, B. (2015). Effects of lead on ultrastructure of Isoetes sinensis Palmer (Isoetaceae), a critically endangered species in China. PLoS ONE, 10(10), e0139231. https://doi.org/10.1371/journal.pone.0139231
Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793
Edo, C., Fernández-Alba, A. R., Vejsnæs, F., Van der Steen, J. J., Fernández-Piñas, F., & Rosal, R. (2021). Honeybees as active samplers for microplastics. Science of the Total Environment, 767, 144481. https://doi.org/10.1016/j.scitotenv.2020.144481
Ely, C., & Smets, B. (2017). Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizo-degradation. International Journal of Phytoremediation, 19(10), 877–883. https://doi.org/10.1080/15226514.2017.1303805
Galal, T. M., Eid, E. M., Dakhil, M. A., & Hassan, L. M. (2018). Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. International Journal of Phytoremediation, 20, 440–447. https://doi.org/10.1080/15226514.2017.1365343
García-Sánchez, M., Košnář, Z., Mercl, F., Aranda, E., & Tlustoš, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 147, 165–174. https://doi.org/10.1016/j.ecoenv.2017.08.050
Goala, M., Bachheti, A., & Kumar, V. (2025). A comprehensive review of recent advances in phytoremediation of wastewaters using Azolla species. 3 Biotech, 15(8), 238. https://doi.org/10.1007/s13205-025-04399
Gopal, B. (2003). Perspectives on wetland science, application, and policy. Hydrobiologia, 490, 1–10. https://doi.org/10.1023/A:1023418911648
Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227, 428–443. https://doi.org/10.1016/j.envpol.2017.04.060
Guittonny-Philippe, A., Petit, M. E., Masotti, V., Monnier, Y., Malleret, L., Coulomb, B., & Laont-Schwob, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management, 147, 108–123. https://doi.org/10.1016/j.jenvman.2014.09.009
Ha, N. T. H., & Anh, B. T. K. (2017). The removal of heavy metals by iron mine drainage sludge and Phragmites australis. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 71, 012022. IOP Publishing. https://doi.org/10.1088/1755-1315/71/1/012022
Hempel, M., Botté, S. E., Negrin, V. L., Chiarello, M. N., & Marcovecchio, J. E. (2008). The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca estuary salt marshes. Journal of Soils and Sediments, 8, 289. https://doi.org/10.1007/s11368-008-0027-z
Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., & Yousaf, S. (2018). Combined application of biochar, compost and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80–88. https://doi.org/10.1016/j.envexpbot.2018.05.009
Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2018). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environmental Geochemistry and Health, 40, 59–85. https://doi.org/10.1007/s10653-017-9908-8
Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart. Solms). Journal of Applied Sciences and Environmental Management, 14(2), 43–49. https://doi.org/10.4314/jasem.v14i2.57834
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
Kansal, D., Gururani, P., Joshi, N. C., Pant, G., & Chauhan, A. (2025). A comprehensive review on utilization of cavitation technology for industrial waste water treatment: A step toward sustainability. Water, Air, and Soil Pollution, 236(7), 438. https://doi.org/10.1007/s11270-025-08053-4
Koul, B., Sharma, K., & Shah, M. P. (2022). Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology & Innovation, 25, 102040. https://doi.org/10.1016/j.eti.2021.102040
Kumar, S., Yadav, R., & Sharma, N. (2025). Comparative analysis of conventional and green technologies for heavy metal removal from water. Environmental Science & Solutions, 18(2), 88–97. https://doi.org/10.4321/ess.2025.180203
Kutty, S., Ngatenah, S., Isa, M., & Malakahmad, A. (2009). Nutrient removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. World Academy of Science, Engineering and Technology, 60, 1115–1123. https://doi.org/10.5281/zenodo.1056273
Lanasa, S., Niedzwiecki, M., Reber, K. P., East, A., Sivey, J. D., & Salice, C. J. (2022). Comparative toxicity of herbicide active ingredients, safener additives, and commercial formulations to the nontarget alga Raphidocelis subcapitata. Environmental Toxicology and Chemistry, 41(6), 1466–1476. https://doi.org/10.1002/etc.5327
Leguizamo, M. A. O., Gómez, W. D. F., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230–1247. https://doi.org/10.1016/j.chemosphere.2016.10.073
Leung, H., Wang, Z., Ye, Z., Yung, K., Peng, X., & Cheung, K. (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere, 23(5), 549–563. https://doi.org/10.1016/S1002-0160(13)60047-8
Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 18, 978–986. https://doi.org/10.1007/s11356-011-0458-8
Maine, M. A., Duarte, M. V., & Suñé, N. L. (2001). Cadmium uptake by floating macrophytes. Water Research, 35, 2629–2634. https://doi.org/10.1016/S0043-1354(00)00557-1
Maine, M. A., Suñé, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501. https://doi.org/10.1016/j.watres.2003.12.025
Mendoza, R. E., García, I. V., de Cabo, L., Weigandt, C. F., & de Iorio, A. F. (2015). The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Science of the Total Environment, 505, 555–564. https://doi.org/10.1016/j.scitotenv.2014.10.019
Mesa, J., Mateos-Naranjo, E., Caviedes, M., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. (2015). Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 90, 150–159. https://doi.org/10.1016/j.marpolbul.2014.11.002
Mondou, M., Maguire, S., Pain, G., Crump, D., Hecker, M., Basu, N., & Hickey, G. M. (2021). Envisioning an international validation process for new approach methodologies in chemical hazard and risk assessment. Environmental Advances, 4, 100061. https://doi.org/10.1016/j.envadv.2021.100061
Mousavi-Kouhi, S. M. (2025). Phytoremediation of nanoparticles, as future water pollutants, using aquatic and wetland plants: Feasibility, benefits and risks, and research gaps. Environmental Science and Pollution Research, 32(11), 6287–6316. https://doi.org/10.1007/s11356-025-36135-7
Muthusaravanan, S., Sivarajasekar, N., Vivek, J., Paramasivan, T., Naushad, M., Prakashmaran, J., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: Mechanisms, methods, and enhancements. Environmental Chemistry Letters, 16, 1339–1359. https://doi.org/10.1007/s10311-018-0762-3
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence, and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8
Naidu, R., Biswas, B., Willett, I. R., Cribb, J., Kumar Singh, B., Paul Nathanail, C., Coulon, F., Semple, K. T., Jones, K. C., Barclay, A., & Aitken, R. J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 156, 106616. https://doi.org/10.1016/j.envint.2021.106616
Peng, K., Luo, C., Lou, L., Li, X., & Shen, Z. (2008). Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq and their potential use for contamination indicators and in wastewater treatment. Science of the Total Environment, 392, 22–29. https://doi.org/10.1016/j.scitotenv.2007.11.032
Rai, U., Tripathi, R., Vajpayee, P., Pandey, N., Ali, M., & Gupta, D. (2003). Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus L. (Potamogetonaceae). Bulletin of Environmental Contamination and Toxicology, 70, 566–575. https://doi.org/10.1007/s00128-003-0043-3
Said, M., Cassayre, L., Dirion, J. L., Nzihou, A., & Joulia, X. (2015). Behavior of heavy metals during gasification of phytoextraction plants: Thermochemical modelling. Computer Aided Chemical Engineering, 37, 341–346.
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721.https://doi.org/10.1016/j.chemosphere.2016.12.020
Sayanthan, S., Hasan, H. A., & Abdullah, S. R. S. (2024). Floating aquatic macrophytes in wastewater treatment: Toward a circular economy. Water, 16(6), 870. https://doi.org/10.3390/w16060870
Shi, J., Xiang, Z., Peng, T., Li, H., Huang, K., Liu, D., & Huang, T. (2021). Effects of melatonin-treated Nasturtium officinale on the growth and cadmium accumulation of subsequently grown rice seedlings. International Journal of Environmental Analytical Chemistry, 101(14), 2288–2296. https://doi.org/10.1080/03067319.2020.1825898
Singh, A., & Patel, V. (2025). Heavy metal contamination in freshwater ecosystems: Sources, impacts, and remediation prospects. Global Journal of Aquatic Pollution, 9(1), 30–45. https://doi.org/10.5423/gjap.2025.90104
Srivastava, A. K., Kumari, S., Singh, R. P., Khan, M., Mishra, P., & Xie, X. (2025). Harnessing the interplay of protein posttranslational modifications: Enhancing plant resilience to heavy metal toxicity. Microbiological Research, 128112. https://doi.org/10.1016/j.micres.2025.128112
Stanikzai, K., Kumar, S., Dwivedi, S., & Chauhan, A. (2023). Phytoremediation of zinc and lead from the polluted soils using sunflower. Journal of Environmental Biology Science, 37, 119–126. https://doi.org/10.59467/JEBS.2023.37.119
Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476. https://doi.org/10.3389/fpls.2018.01476
Tee, P. F., Abdullah, M. O., Tan, I. A. W., Rashid, N. K. A., Amin, M. A. M., Nolasco-Hipolito, C., & Bujang, K. (2016). Review on hybrid energy systems for wastewater treatment and bio-energy production. Renewable and Sustainable Energy Reviews, 54, 235–246. https://doi.org/10.1016/j.rser.2015.10.011
U.S. Environmental Protection Agency. (2021). Nutrient pollution: The effects: Environment. U.S. Environmental Protection Agency. https://www.epa.gov/nutrientpollution/effects-environment
Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029
Wang, J., Song, X., Wang, Y., Bai, J., Li, M., & Dong, G. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of the Total Environment, 607–608, 53–62. https://doi.org/10.1016/j.scitotenv.2017.06.243
Wang, J., Zhu, Q., Shan, Y., Wang, Y., Song, X., & Lei, X. (2018). A comparative study on the efficiency of biodegradable EDDS and micro-electric field on the promotion of the phytoextraction by Commelina communis in Cu-contaminated soils. Geoderma, 314, 1-7. (no DOI available)
Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-005-4669-0
Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-004-0226-1.
Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., & Li, S. (2021). Health and environmental effects of heavy metals. Journal of King Saud University - Science, 34(1), 101653. https://doi.org/10.1016/j.jksus.2021.101653
Zhuang, Q., Wu, S., Yan, Y., Niu, Y., Yang, F., & Xie, C. (2020). Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. Science of the Total Environment, 710, 136336. https://doi.org/10.1016/j.scitotenv.2019.136336