Main Article Content

Abstract

Some aquatic plants have a remarkable ability to absorb and accumulate heavy metals, which can be utilized in reducing water pollution. In this review, we assessed the utilization of aquatic macrophytes, specifically water hyacinth (Eichhornia crassipes), for heavy metal cleanup and sustainable wastewater treatment. After screening 12 databases, such as PubMed, Scopus, Web of Science, and ScienceDirect for the period 2019-2024, we reviewed 112 studies. Bibliometric analysis using VOS viewer (v1. 6. 18), which revealed the main research trends, citation networks and thematic clusters. The produced results suggest that (i) the water hyacinth has a high capacity of cadmium accumulation (166.25 ppm dry weight), but is very effective for the removal of lead, mercury, arsenic, and nickel. Other macrophytes, including Lemna minor, Pistia stratiotes, and Hydrilla verticillata, also have a considerable extent of chromium, copper, and zinc removed. While exposure to metals imposes physiological stress, the aquatic plants act as symptoms, causing low-cost, eco-friendly phytoremediation agents.

Keywords

Aquatic Macrophytes Environmental Contamination Heavy Metal Pollution Phytoremediation Wastewater Treatment

Article Details

How to Cite
Stanikzai, K., Chauhan, A., & Saadat, M. Y. (2026). Exploring the Role of Aquatic Macrophytes in Phytoremediation of Heavy Metal-Contaminated Water. Journal of Natural Sciences – Kabul University, 8(Special Issue), 381–399. https://doi.org/10.62810/jns.v8iSpecial Issue.505

References

  1. Åström, F., & Greger, M. (2003). Aquatic and terrestrial plant species with the potential to remove heavy metals from stormwater. International Journal of Phytoremediation, 5(3), 211–224. https://doi.org/10.1080/713779178
  2. Ahamad, F., Chauhan, A., Chauhan, P. K., Upadhyay, S. K., Tomar, A., Singh, N., & Andrade, T. (2025). Addressing complex challenges in water quality management: Emerging technologies and sustainable strategies. Computational Automation for Water Security, 251–276. https://doi.org/10.1016/B978-0-443-33321-7.00003-2
  3. Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305
  4. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
  5. Alloway, B. J. (Ed.). (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media. https://doi.org/10.1007/978-94-007-4470-7
  6. Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research, 46(4), 371–376. https://doi.org/10.1016/j.ejar.2020.10.002
  7. Basharat, Z., Novo, L., & Yasmin, A. (2018). Genome editing weds CRISPR: What is in it for phytoremediation? Plants, 7(3), 51. https://doi.org/10.3390/plants7030051
  8. Chauhan, A., Tomar, A., Attri, S., Sethi, M., Prabhat, Upadhyay, S. K., & Chauhan, P. K. (2025). Application of modern tools for the real-time monitoring of bioremediation approach and its advantages. In A. L. Srivastav, I. Zinicovscaia, & L. Cepoi (Eds.), Biotechnologies for wastewater treatment and resource recovery: Current trends and future scope (pp. 255–266). Elsevier. https://doi.org/10.1016/B978-0-443-27376-6.00018-9
  9. Chen, G., Huang, J., Fang, Y., Zhao, Y., Tian, X., Jin, Y., & Zhao, H. (2018). Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in Dianchi Lake basin. Bioresource Technology, 276, 8–17. https://doi.org/10.1016/j.biortech.2018.03.121
  10. Cheng, P., Yihao, S., Wu, X., Yuan, P., Jiang, L., Chen, S., ... & Xinshan, S. (2020). Heavy metals, nitrogen, and phosphorus in sediments from the first drinking water reservoir supplied by the Yangtze River in Shanghai, China: Spatial distribution characteristics and pollution risk assessment. Water, Air, and Soil Pollution, 231(6). https://doi.org/10.1007/s11270-020-04589-6
  11. Cristaldi, A., Conti, G., Jho, E., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs: A brief review. Environments, 4(7), 309–326. https://doi.org/10.3390/environments8070309
  12. Das, S., Das, A., Parsha, E., Mazumder, T., Paul, R., & Das, S. (2021). Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation. International Journal of Phytoremediation, 23(10), 1035–1044. https://doi.org/10.1080/15226514.2021.1895714
  13. Ding, G., Li, C., Han, X., Chi, C., Zhang, D., & Liu, B. (2015). Effects of lead on ultrastructure of Isoetes sinensis Palmer (Isoetaceae), a critically endangered species in China. PLoS ONE, 10(10), e0139231. https://doi.org/10.1371/journal.pone.0139231
  14. Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793
  15. Edo, C., Fernández-Alba, A. R., Vejsnæs, F., Van der Steen, J. J., Fernández-Piñas, F., & Rosal, R. (2021). Honeybees as active samplers for microplastics. Science of the Total Environment, 767, 144481. https://doi.org/10.1016/j.scitotenv.2020.144481
  16. Ely, C., & Smets, B. (2017). Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizo-degradation. International Journal of Phytoremediation, 19(10), 877–883. https://doi.org/10.1080/15226514.2017.1303805
  17. Galal, T. M., Eid, E. M., Dakhil, M. A., & Hassan, L. M. (2018). Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. International Journal of Phytoremediation, 20, 440–447. https://doi.org/10.1080/15226514.2017.1365343
  18. García-Sánchez, M., Košnář, Z., Mercl, F., Aranda, E., & Tlustoš, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 147, 165–174. https://doi.org/10.1016/j.ecoenv.2017.08.050
  19. Goala, M., Bachheti, A., & Kumar, V. (2025). A comprehensive review of recent advances in phytoremediation of wastewaters using Azolla species. 3 Biotech, 15(8), 238. https://doi.org/10.1007/s13205-025-04399
  20. Gopal, B. (2003). Perspectives on wetland science, application, and policy. Hydrobiologia, 490, 1–10. https://doi.org/10.1023/A:1023418911648
  21. Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227, 428–443. https://doi.org/10.1016/j.envpol.2017.04.060
  22. Guittonny-Philippe, A., Petit, M. E., Masotti, V., Monnier, Y., Malleret, L., Coulomb, B., & Laont-Schwob, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management, 147, 108–123. https://doi.org/10.1016/j.jenvman.2014.09.009
  23. Ha, N. T. H., & Anh, B. T. K. (2017). The removal of heavy metals by iron mine drainage sludge and Phragmites australis. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 71, 012022. IOP Publishing. https://doi.org/10.1088/1755-1315/71/1/012022
  24. Hempel, M., Botté, S. E., Negrin, V. L., Chiarello, M. N., & Marcovecchio, J. E. (2008). The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca estuary salt marshes. Journal of Soils and Sediments, 8, 289. https://doi.org/10.1007/s11368-008-0027-z
  25. Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., & Yousaf, S. (2018). Combined application of biochar, compost and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80–88. https://doi.org/10.1016/j.envexpbot.2018.05.009
  26. Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2018). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environmental Geochemistry and Health, 40, 59–85. https://doi.org/10.1007/s10653-017-9908-8
  27. Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart. Solms). Journal of Applied Sciences and Environmental Management, 14(2), 43–49. https://doi.org/10.4314/jasem.v14i2.57834
  28. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
  29. Kansal, D., Gururani, P., Joshi, N. C., Pant, G., & Chauhan, A. (2025). A comprehensive review on utilization of cavitation technology for industrial waste water treatment: A step toward sustainability. Water, Air, and Soil Pollution, 236(7), 438. https://doi.org/10.1007/s11270-025-08053-4
  30. Koul, B., Sharma, K., & Shah, M. P. (2022). Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology & Innovation, 25, 102040. https://doi.org/10.1016/j.eti.2021.102040
  31. Kumar, S., Yadav, R., & Sharma, N. (2025). Comparative analysis of conventional and green technologies for heavy metal removal from water. Environmental Science & Solutions, 18(2), 88–97. https://doi.org/10.4321/ess.2025.180203
  32. Kutty, S., Ngatenah, S., Isa, M., & Malakahmad, A. (2009). Nutrient removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. World Academy of Science, Engineering and Technology, 60, 1115–1123. https://doi.org/10.5281/zenodo.1056273
  33. Lanasa, S., Niedzwiecki, M., Reber, K. P., East, A., Sivey, J. D., & Salice, C. J. (2022). Comparative toxicity of herbicide active ingredients, safener additives, and commercial formulations to the nontarget alga Raphidocelis subcapitata. Environmental Toxicology and Chemistry, 41(6), 1466–1476. https://doi.org/10.1002/etc.5327
  34. Leguizamo, M. A. O., Gómez, W. D. F., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230–1247. https://doi.org/10.1016/j.chemosphere.2016.10.073
  35. Leung, H., Wang, Z., Ye, Z., Yung, K., Peng, X., & Cheung, K. (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere, 23(5), 549–563. https://doi.org/10.1016/S1002-0160(13)60047-8
  36. Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 18, 978–986. https://doi.org/10.1007/s11356-011-0458-8
  37. Maine, M. A., Duarte, M. V., & Suñé, N. L. (2001). Cadmium uptake by floating macrophytes. Water Research, 35, 2629–2634. https://doi.org/10.1016/S0043-1354(00)00557-1
  38. Maine, M. A., Suñé, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501. https://doi.org/10.1016/j.watres.2003.12.025
  39. Mendoza, R. E., García, I. V., de Cabo, L., Weigandt, C. F., & de Iorio, A. F. (2015). The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Science of the Total Environment, 505, 555–564. https://doi.org/10.1016/j.scitotenv.2014.10.019
  40. Mesa, J., Mateos-Naranjo, E., Caviedes, M., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. (2015). Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 90, 150–159. https://doi.org/10.1016/j.marpolbul.2014.11.002
  41. Mondou, M., Maguire, S., Pain, G., Crump, D., Hecker, M., Basu, N., & Hickey, G. M. (2021). Envisioning an international validation process for new approach methodologies in chemical hazard and risk assessment. Environmental Advances, 4, 100061. https://doi.org/10.1016/j.envadv.2021.100061
  42. Mousavi-Kouhi, S. M. (2025). Phytoremediation of nanoparticles, as future water pollutants, using aquatic and wetland plants: Feasibility, benefits and risks, and research gaps. Environmental Science and Pollution Research, 32(11), 6287–6316. https://doi.org/10.1007/s11356-025-36135-7
  43. Muthusaravanan, S., Sivarajasekar, N., Vivek, J., Paramasivan, T., Naushad, M., Prakashmaran, J., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: Mechanisms, methods, and enhancements. Environmental Chemistry Letters, 16, 1339–1359. https://doi.org/10.1007/s10311-018-0762-3
  44. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
  45. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence, and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8
  46. Naidu, R., Biswas, B., Willett, I. R., Cribb, J., Kumar Singh, B., Paul Nathanail, C., Coulon, F., Semple, K. T., Jones, K. C., Barclay, A., & Aitken, R. J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 156, 106616. https://doi.org/10.1016/j.envint.2021.106616
  47. Peng, K., Luo, C., Lou, L., Li, X., & Shen, Z. (2008). Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq and their potential use for contamination indicators and in wastewater treatment. Science of the Total Environment, 392, 22–29. https://doi.org/10.1016/j.scitotenv.2007.11.032
  48. Rai, U., Tripathi, R., Vajpayee, P., Pandey, N., Ali, M., & Gupta, D. (2003). Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus L. (Potamogetonaceae). Bulletin of Environmental Contamination and Toxicology, 70, 566–575. https://doi.org/10.1007/s00128-003-0043-3
  49. Said, M., Cassayre, L., Dirion, J. L., Nzihou, A., & Joulia, X. (2015). Behavior of heavy metals during gasification of phytoextraction plants: Thermochemical modelling. Computer Aided Chemical Engineering, 37, 341–346.
  50. Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721.https://doi.org/10.1016/j.chemosphere.2016.12.020
  51. Sayanthan, S., Hasan, H. A., & Abdullah, S. R. S. (2024). Floating aquatic macrophytes in wastewater treatment: Toward a circular economy. Water, 16(6), 870. https://doi.org/10.3390/w16060870
  52. Shi, J., Xiang, Z., Peng, T., Li, H., Huang, K., Liu, D., & Huang, T. (2021). Effects of melatonin-treated Nasturtium officinale on the growth and cadmium accumulation of subsequently grown rice seedlings. International Journal of Environmental Analytical Chemistry, 101(14), 2288–2296. https://doi.org/10.1080/03067319.2020.1825898
  53. Singh, A., & Patel, V. (2025). Heavy metal contamination in freshwater ecosystems: Sources, impacts, and remediation prospects. Global Journal of Aquatic Pollution, 9(1), 30–45. https://doi.org/10.5423/gjap.2025.90104
  54. Srivastava, A. K., Kumari, S., Singh, R. P., Khan, M., Mishra, P., & Xie, X. (2025). Harnessing the interplay of protein posttranslational modifications: Enhancing plant resilience to heavy metal toxicity. Microbiological Research, 128112. https://doi.org/10.1016/j.micres.2025.128112
  55. Stanikzai, K., Kumar, S., Dwivedi, S., & Chauhan, A. (2023). Phytoremediation of zinc and lead from the polluted soils using sunflower. Journal of Environmental Biology Science, 37, 119–126. https://doi.org/10.59467/JEBS.2023.37.119
  56. Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476. https://doi.org/10.3389/fpls.2018.01476
  57. Tee, P. F., Abdullah, M. O., Tan, I. A. W., Rashid, N. K. A., Amin, M. A. M., Nolasco-Hipolito, C., & Bujang, K. (2016). Review on hybrid energy systems for wastewater treatment and bio-energy production. Renewable and Sustainable Energy Reviews, 54, 235–246. https://doi.org/10.1016/j.rser.2015.10.011
  58. U.S. Environmental Protection Agency. (2021). Nutrient pollution: The effects: Environment. U.S. Environmental Protection Agency. https://www.epa.gov/nutrientpollution/effects-environment
  59. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029
  60. Wang, J., Song, X., Wang, Y., Bai, J., Li, M., & Dong, G. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of the Total Environment, 607–608, 53–62. https://doi.org/10.1016/j.scitotenv.2017.06.243
  61. Wang, J., Zhu, Q., Shan, Y., Wang, Y., Song, X., & Lei, X. (2018). A comparative study on the efficiency of biodegradable EDDS and micro-electric field on the promotion of the phytoextraction by Commelina communis in Cu-contaminated soils. Geoderma, 314, 1-7. (no DOI available)
  62. Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-005-4669-0
  63. Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 26(4), 343–357. https://doi.org/10.1007/s10653-004-0226-1.
  64. Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., & Li, S. (2021). Health and environmental effects of heavy metals. Journal of King Saud University - Science, 34(1), 101653. https://doi.org/10.1016/j.jksus.2021.101653
  65. Zhuang, Q., Wu, S., Yan, Y., Niu, Y., Yang, F., & Xie, C. (2020). Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. Science of the Total Environment, 710, 136336. https://doi.org/10.1016/j.scitotenv.2019.136336