Main Article Content

Abstract

As in the rest of the world, desertification is a serious threat in Afghanistan, driven by overgrazing, climate change, and soil degradation. This research aims to identify the main factors of land degradation and to determine strategies to combat this disaster. The importance and necessity of research is to prevent land degradation and to achieve higher agricultural production. More than 300 articles have been studied to write the paper. The articles utilized were those in which the research context was very similar to that of Afghanistan. The findings revealed that reforestation is an essential measure in combating land desertification. Additionally, promoting sustainable grazing, collecting rainwater, and using modern irrigation systems are crucial steps for addressing land degradation in Afghanistan. These approaches not only reduce the impacts of desertification but also contribute to environmental development.

Keywords

Afghanistan Climate change Irrigation Erosion Forestry Desertification

Article Details

How to Cite
Ahamadzai, M. A., Rahil , A., & Mangal, M. Q. (2026). Factors Affecting Land Degradation in the Arid Regions of Afghanistan and Mitigation Approaches. Journal of Natural Sciences – Kabul University, 8(Special Issue), 121–132. https://doi.org/10.62810/jns.v8iSpecial Issue.502

References

  1. Abo Ragab, S. (2010). A Desertification Impact on Siwa Oasis: Present and Future Challenges Research Journal of Agriculture and Biological Sciences (Vol. 6). Link
  2. Barbier, E. B., and Hochard, J. P. (2018). Land degradation and poverty. Nature Sustainability, 1(11), 623–631. https://DOI:10.1038/s41893-018-0155-4
  3. Carrao, H., Naumann, G., and Barbosa, P. (2017). Global projections of drought hazard in a warming climate: a prime for disaster risk management. Climate Dynamics. https://DOI10.1007/s00382-017-3740-8.
  4. Ceballos, G., Pacheco, J., Cruzado, J., Manzano Fischer, P., List, R., Davidson, A., and Santos Barrera, G. (2019). Rapid Decline of a Grassland System and Its Ecological and Conservation Implications. PLoS ONE, 5(1), 8562. https://DOI:10.1371/journal.pone.0008562
  5. Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z.,and Wu, B. (2016). Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6(11), 1019–1022. DOI: https://doi.org/10.1038/nclimate3092
  6. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, and Bayala, J. (2010). Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Security, 2(3), 197–214. https://doi.org/10.1007/s12571-010-0070-7
  7. Han, G., Hao, X., Zhao, M., Wang, M., Ellert, B. H., Willms, W., and Wang, M. (2008). Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems and Environment, 125(1), 21–32. https://doi.org/10.1016/j.agee.2007.11.009
  8. Han, Q., Luo, G., Li, C., Shakir, A., Wu, M., and Saidov, A. (2016). Simulated grazing effects on carbon emission in Central Asia. Agricultural and Forest Meteorology, 216, 203–214. https://doi.org/10.1016/j.agrformet.2015.10.007
  9. Snorek, J., Renaud, F. G., and Kloos, J. (2014). Divergent adaptation to climate variability: A case study of pastoral and agricultural societies in Niger. Global Environmental Change, 29, 371–386. https://doi.org/10.1016/j.gloenvcha.2014.06.014
  10. Wu, C., Yeh, P. J. F., Ju, J., Chen, Y. Y., Xu, K., Dai, H., and Huang, G. (2021). Assessing the spatiotemporal uncertainties in future meteorological droughts from CMIP5 models, emission scenarios, and bias corrections. Journal of Climate, 34(5), 1903-1922. DOI: https://doi.org/10.1175/JCLI-D-20-0411.1
  11. Khashtabeh, R., Akbari, M., Kolahi, M., and Talebanfard, A. (2021). Assessing the effects of desertification control projects using socio-economic indicators in the arid regions of eastern Iran. Environment, Development and Sustainability, 23(7), 10455-10469. https://doi.org/10.1007/s10668-020-01065-6
  12. Portnov, B. A., and Safriel, U. N. (2004). Combating desertification in the Negev: dryland agriculture vs. dryland urbanization. Journal of Arid Environments, 56(4), 659-680. https://doi.org/10.1016/S0140-1963(03)00087-9
  13. Verstraete, M. M., Scholes, R. J., and Smith, M. S. (2009). Climate and desertification: looking at an old problem through new lenses. Frontiers in Ecology and the Environment, 7(8), 421-428. https://doi.org/10.1890/080119
  14. Salih, A. A., Ganawa, E. T., and Elmahl, A. A. (2017). Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Landsat imagery. The Egyptian Journal of Remote Sensing and Space Science, 20, S21-S29. https://doi.org/10.1016/j.ejrs.2016.12.008
  15. Ansar, G. P., and Heidebrecht, K. B. (2005). Desertification alters regional ecosystem–climate interactions. Global Change Biology, 11(1), 182-194. https://doi.org/10.1111/j.1529-8817.2003.00880.x
  16. Saiko, T. A., and Zonn, I. S. (2000). Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Applied Geography, 20(4), 349-367. https://doi.org/10.1016/S0143-6228(00)00014-X
  17. Lavee, H., Imeson, A. C., and Sarah, P. (1998). The impact of climate change on geomorphology and desertification along a Mediterranean‐arid transect. Land degradation and development, 9(5), 407-422. https://doi.org/10.1002/(SICI)1099-145X(199809/10)9:5%3C407::AID-LDR302%3E3.0.CO;2-6
  18. Rastgoo, M., and Hasanfard, A. (2021). Desertification in agricultural lands: approaches to mitigation. Deserts and desertification, 153. https://DOI:10.5772/intechopen.98795
  19. Odjugo, A. P., and Isi, A. I. (2003). The impact of climate change and anthropogenic factors on desertification in the semi-arid region of Nigeria. Global Journal of Environmental Sciences, 2(2), 118-127. https://DOI:10.5772/intechopen.98795
  20. Ding, H., and Xingming, H. (2021). Spatiotemporal change and driver’s analysis of desertification in the arid region of northwest China based on geographic detector. Environmental Challenges, 4, 100082. https://doi.org/10.1016/j.envc.2021.100082
  21. Su, Y. Z., Zhao, W. Z., Su, P. X., Zhang, Z. H., Wang, T., and Ram, R. (2007). Ecological effects of desertification control and desertified land reclamation in an oasis–desert ecotone in an arid region: A case study in Hexi Corridor, northwest China. Ecological Engineering, 29(2), 117-124. https://doi.org/10.1016/j.ecoleng.2005.10.015
  22. Emadodin, I., Reinsch, T., and Taube, F. (2019). Drought and desertification in Iran. Hydrology, 6(3), 66. https://doi.org/10.3390/HYDROLOGY6030066
  23. Torres, L., Abraham, E. M., Rubio, C., Barbero‐Sierra, C., and Ruiz-Perez, M. (2015). Desertification research in Argentina. Land Degradation and Development, 26(5), 433-440. https://doi.org/10.1002/ldr.2392
  24. Abderrahman, W. A., Bader, T. A., Kahn, A. U., and Ajward, M. H. (1991). Weather modification impact on reference evapotranspiration, soil salinity and desertification in arid regions: a case study. Journal of arid environments, 20(3), 277-286. https://doi.org/10.1016/S0140-1963(18)30689-X
  25. Wang, Y., Zhao, Y., Yan, L., Deng, W., Zhai, J., Chen, M., and Zhou, F. (2022). Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas. Agricultural Water Management, 271, 107758. https://doi.org/10.1016/j.agwat.2022.107758
  26. Vicente, S. M., Dominguez, F., McVicar, T. R., Tomas, M., Pena, M., Noguera, I., and Kenawy, A. (2020). Global characterization of hydrological and meteorological droughts under future climate change: The importance of timescales, vegetation‐CO2 feedbacks and changes to distribution functions. International Journal of Climatology, (5), 2557-2567. https://doi.org/10.1002/joc.6350
  27. Kassas, M. (2008). Aridity, drought and desertification. In Arab environment. Future challenges. Beirut, Lebanon: Arab Forum for Environment and Development (pp. 95-110).
  28. Kundu, A., Patel, N. R., Saha, S. K., and Dutta, D. (2017). Desertification in western Rajasthan (India): an assessment using remote sensing derived rain-use efficiency and residual trend methods. Natural Hazards, 86(1), 297-313. https://doi.org/10.1007/s11069-016-2689-y
  29. Salunkhe, S. S., Bera, A. K., Rao, S. S., Venkataraman, V. R., Raj, U., and Murthy, Y. K. (2018). Evaluation of indicators for desertification risk assessment in part of Thar Desert Region of Rajasthan using geospatial techniques. Journal of Earth System Science, 127(8), 116. https://doi.org/10.1007/s12040-018-1016-2
  30. Peters, D. P., Yao, J., Sala, O. E., and Anderson, J. P. (2012). Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Global Change Biology, 18(1), 151-163. https://doi.org/10.1111/j.1365-2486.2011.02498.x
  31. Hirche, A., Salamani, M., Abdellaoui, A., Benhouhou, S., and Valderrama, J. M. (2011). Landscape changes of desertification in arid areas: the case of south-west Algeria. Environmental monitoring and assessment, 179(1), 403-420. https://DOI10.1007/s10661-010-1744-5
  32. Zare, M., Nazari Samani, A. A., Mohammady, M., Teimurian, T., and Bazrafshan, J. (2016). Simulation of soil erosion under the influence of climate change scenarios. Environmental Earth Sciences, 75(21), 1–15. https://doi.org/10.1007/s12665-016-6180-6