Main Article Content

Abstract

Climate change not only contributes to drought, irregular precipitation, and floods, but also plays a significant role in the emergence and intensification of various infectious diseases. The primary driver of climate change is the emission of greenhouse gases, which leads to various climatic hazards. Consequently, wild animals, including reptiles, insects, and birds, which serve as reservoirs or vectors of infectious agents, are forced to migrate from their natural habitats toward urban areas, increasing their contact with human populations. This study is a literature-based review aimed at clarifying the relationship between climate change and infectious diseases. Our study highlights that rising temperatures, irregular rainfall patterns, drought, and deforestation are key factors that contribute to the increased incidence and severity of infectious diseases. Preventive measures against climate-related risks, strengthening public health surveillance, and conducting further research in this field are therefore essential.

Keywords

Climate Change Infection Infectious Diseases Natural Environments Vectors Natural Antioxidants

Article Details

How to Cite
Usmani, A., & Choopan , A. K. (2026). The Role of Climate Change in the Spread of Infectious Diseases. Journal of Natural Sciences – Kabul University, 8(Special Issue), 77–89. https://doi.org/10.62810/jns.v8iSpecial Issue.494

References

  1. Al-Tayib, O. A. (2019). An overview of the most significant zoonotic viral pathogens transmitted from animal to human in Saudi Arabia. Pathogens, 8(1), Article 25. https://doi.org/10.3390/pathogens8010025
  2. Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S., & Harvell, C. D. (2013). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341(6145), 514–519. https://doi.org/10.1126/science.1239401
  3. Coates, S. J., Enbiale, W., Davis, M. D. P., & Andersen, L. K. (2020). The effects of climate change on human health in Africa, a dermatologic perspective: A report from the International Society of Dermatology Climate Change Committee. International Journal of Dermatology, 59(3), 265–278. https://doi.org/10.1111/ijd.14759
  4. Choi, Y. K. (2021). Emerging and re-emerging fatal viral diseases. Experimental & Molecular Medicine, 53(5), 711–712. https://doi.org/10.1038/s12276-021-00608-9
  5. El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 27(18), 22336–22352. https://doi.org/10.1007/s11356-020-08896-w
  6. Essar, M. Y., Siddiqui, A., & Head, M. G. (2023). Infectious diseases in Afghanistan: Strategies for health system improvement. Health Science Reports, 6(12), e1775. https://doi.org/10.1002/hsr2.1775
  7. Frenk, J., Gómez-Dantés, O., & Knaul, F. M. (2011). Globalization and infectious diseases. Infectious Disease Clinics of North America, 25(3), 593–599.https://doi.org/10.1016/j.idc.2011.05.003
  8. Gale, P., Drew, T., Phipps, L. P., David, G., & Wooldridge, M. (2009). The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. Journal of Applied Microbiology, 106(5), 1409–1423. https://doi.org/10.1111/j.1365-2672.2008.04036.
  9. Greer, A., Ng, V., & Fisman, D. (2008). Climate change and infectious diseases in North America: The road ahead. CMAJ: Canadian Medical Association Journal, 178(6), 715–722. https://doi.org/10.1503/cmaj.081325
  10. Haines, A., & Patz, J. A. (2004). Health effects of climate change. JAMA, 291(1), 99–103. https://doi.org/10.1001/jama.291.1.99
  11. Hellberg, R. S., & Chu, E. (2016). Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Critical Reviews in Microbiology, 42(4), 548–572. https://doi.org/10.3109/1040841X.2014.972335
  12. Helldén, D., Andersson, C., Nilsson, M., Ebi, K. L., Friberg, P., & Alfvén, T. (2021). Climate change and child health: A scoping review and an expanded conceptual framework. The Lancet Planetary Health, 5(3), e164–e175. https://doi.org/10.1016/S2542-5196(20)30274-6
  13. Hunter, P. R. (2003). Climate change and waterborne and vector-borne disease. Journalof Applied Microbiology, 94(Suppl. 1), 37S–46S. https://doi.org/10.1046/j.1365-2672.94.s1.5.x
  14. Hui, E. K. W. (2006). Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes and Infection, 8(3), 905–916. https://doi.org/10.1016/j.micinf.2005.06.032
  15. Jaijyan, D. K., Liu, J., Hai, R., & Zhu, H. (2018). Emerging and reemerging human viral diseases. Annals of Microbiology Research, 2(1), 31–44.
  16. Johnson, C. K., Hitchens, P. L., Evans, T. S., Goldstein, T., Thomas, K., Clements, A., & Mazet, J. A. K. (2015). Spillover and pandemic properties of zoonotic viruses with high host plasticity. Scientific Reports, 5, Article 14830. https://doi.org/10.1038/srep14830
  17. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536
  18. Kanki, P. J. (2012). Infectious diseases, introduction. In Infectious Diseases: Selected Entries from the Encyclopedia of Sustainability Science and Technology (pp. 1–6). Springer New York. https://doi.org/10.1007/978-1-4614-5719-0
  19. Kessel, D. G. (2000). Global warming—facts, assessment, countermeasures. Journal of Petroleum Science and Engineering, 26(1-4), 157-168. https://doi.org/10.1016/S0920-4105(00)00030-9
  20. Kontra, J. M. (2017). Zombie infections and other infectious disease complications of global warming. Journal of Lancaster General Hospital, 12(1), 12–16. https://doi.org/10.1007/s00484-001-0119-6
  21. LaDeau, S. L., Calder, C. A., Doran, P. J., & Marra, P. P. (2011). West Nile virus impacts in American crow populations are associated with human land use and climate. Ecological Research, 26, 909-916. https://doi.org/10.1007/s11284-010-0725-z
  22. Lancien, J., Muguwa, J., Lannes, C., & Bouvier, J. B. (1990). Tsetse and human trypanosomiasis challenge in south eastern Uganda. International Journal of Tropical Insect Science, 11(3), 411-416. https://doi.org/10.1017/S1742758400012832
  23. Metcalf, C. J. E., & Lessler, J. (2017). Opportunities and challenges in modeling emerging infectious diseases. Science, 357(6347), 149-152. 10.1126/science.aam8335
  24. Mora, C., McKenzie, T., Gaw, I. M., Dean, J. M., von Hammerstein, H., Knudson, T. A., ... & Franklin, E. C. (2022). Over half of known human pathogenic diseases can be aggravated by climate change. Nature climate change, 12(9), 869-875. https://www.nature.com/articles/s41558-022-01426-1
  25. Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., … & Hunter, C. L. (2018). Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change, 8(12), 1062–1071. https://doi.org/10.1038/s41558-018-0315-6
  26. Nava, A., Shimabukuro, J. S., Chmura, A. A., & Luz, S. L. B. (2017). The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR Journal, 58(3), 393–400. https://doi.org/10.1093/ilar/ilx034
  27. Nichols, G., Lake, I., & Heaviside, C. (2018). Climate change and water-related infectious diseases. Atmosphere, 9(10), 385. https://doi.org/10.3390/atmos9100385
  28. Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438(7066), 310–317. https://doi.org/10.1038/nature04188
  29. Rahman, M. T., Sobur, M. A., Islam, M. S., Ievy, S., Hossain, M. J., El Zowalaty, M. E., & Ashour, H. M. (2020). Zoonotic diseases: Etiology, impact, and control. Microorganisms, 8(9), 1405. https://doi.org/10.3390/microorganisms8091405
  30. Semenza, J. C., Herbst, S., Rechenburg, A., Suk, J. E., Höser, C., Schreiber, C., & Kistemann, T. (2012). Climate change impact assessment of food- and waterborne diseases. Critical Reviews in Environmental Science and Technology, 42(8), 857–890. https://doi.org/10.1080/10643389.2010.534706
  31. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., & Miller, H. (2007). IPCC fourth assessment report (AR4). Climate change, 374. https://archive.ipcc.ch/report/ar4/wg1/
  32. Tabachnick, W. J. (2016). Climate change and the arboviruses: Lessons from the evolution of the dengue and yellow fever viruses. Annual Review of Virology, 3(1), 125–145. https://doi.org/10.1146/annurev-virology-110615-035630
  33. Rahman, M. T., Sobur, M. A., Islam, M. S., Ievy, S., Hossain, M. J., El Zowalaty, M. E., & Ashour, H. M. (2020). Zoonotic diseases: Etiology, impact, and control. Microorganisms, 8(9), Article 1405. https://doi.org/10.3390/microorganisms8091405
  34. Usmani, A., Baseer, A. Q., Rahimi, B. A., Jahid, A., Niazi, P., Monib, A. W., & Lali, W. M. (2020). Coronavirus disease 2019 (COVID-19) pandemic: What is the level of knowledge, attitude, and practice in Kandahar, Afghanistan? African Journal of MicrobiologyResearch, 14(9), 465–470. https://doi.org/10.5897/AJMR2020.9369
  35. Vezzulli, L., Colwell, R. R., & Pruzzo, C. (2013). Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microbial Ecology, 65(4), 817–825. https://doi.org/10.1007/s00248-012-0163-2
  36. Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., et al. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9