Main Article Content

Abstract

This study was conducted in 2024 at the Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan, with the objective of evaluating the physicochemical properties of agricultural soils in the Dand and Arghandab districts. A total of 60 soil samples were randomly collected from different agricultural lands within the two districts and analyzed in the laboratory. The results indicated that the average water holding capacity of the soils was 58.4 ± 3%, the pH was 8.4 ± 0.07, the electrical conductivity (EC) was 0.754 ± 0.33 dS/m, the organic carbon content was 0.79 ± 0.2%, the organic matter was 1.35 ± 0.4%, and the total nitrogen was 673 ± 61 kg/ha. Overall, the soils of Dand and Arghandab districts were classified as high in water holding capacity, alkaline in pH, non-saline in electrical conductivity, low in organic carbon, poor in organic matter, and low in total nitrogen.

Keywords

Electrical Conductivity pH Soil Organic Carbon and Matter Nitrogen

Article Details

How to Cite
Obaid, H., Faiz, M. A., Ehsan, Q., & Zaryal, K. (2025). Evaluation of Physicochemical Properties of Agricultural Lands in Dand and Arghandab Districts, Kandahar Province. Journal of Natural Sciences – Kabul University, 8(3), 117–131. https://doi.org/10.62810/jns.v8i3.469

References

  1. Ahmadzai, H. & Omuto, C. T. (2019). Afghanistan soil catalogue Volume 1: Soil profiles of twenty-six districts in nine provinces representing Afghanistan Agro-ecological zones. Kabul, Afghanistan: FAO. Link
  2. Bashir, O., Ali, T., Baba, Z. A., Rather, G. H., Bangroo, S. A., Mukhtar, S. D., ... & Bhat, R. A. (2021). Soil organic matter and its impact on soil properties and nutrient status. In Microbiota and biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs (pp. 129-159). https://doi.org/10.1007/978-3-030-61010-4_7 DOI: https://doi.org/10.1007/978-3-030-61010-4_7
  3. Boudh, S., & Singh, J. S. (2019). Pesticide contamination: environmental problems and remediation strategies. Emerging and eco-friendly approaches for waste management, 245-269. https://doi.org/10.1007/978-981-10-8669-4_12 DOI: https://doi.org/10.1007/978-981-10-8669-4_12
  4. Cotrufo, M. F., Haddix, M. L., Kroeger, M. E., & Stewart, C. E. (2022). The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 168, 108648. https://doi.org/10.1016/j.soilbio.2022.108648 DOI: https://doi.org/10.1016/j.soilbio.2022.108648
  5. Ehsan, Q., Amini, M. Y., Obaid, H., Zaryal, K., Nazir, R., Fazil, K., & Serat, W. A. (2024). Yield and economics response of two cultivars of mungbean (Vigna radiata L.) to different potassium levels. ESRJ, 1(1), 164-177. Link
  6. Ehsan, Q., Rana, D. S., & Choudhary, A. K. (2017). Productivity and resource-use efficiency of greengram (Vigna radiata) as influenced by sowing methods and phosphorus levels under semi-arid conditions of Afghanistan. Indian Journal of Agronomy, 62(3), 367-370. https://doi.org/10.59797/ija.v62i3.4310 DOI: https://doi.org/10.59797/ija.v62i3.4310
  7. Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis: A manual for the West Asia and North Africa region. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA)
  8. FAO. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations, Rome, Italy. Link
  9. Futa, B., Gmitrowicz-Iwan, J., Skersienė, A., Šlepetienė, A., & Parašotas, I. (2024). Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability, 16(21), 9481. https://doi.org/10.3390/su16219481. DOI: https://doi.org/10.3390/su16219481
  10. Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems; 6(2). https://doi.org/10.3390/soilsystems6020033 DOI: https://doi.org/10.3390/soilsystems6020033
  11. Hashimi, R., Matsuura, E., & Komatsuzaki, M. (2020). Effects of Cultivating Rice and Wheat with and without Organic Fertilizer Application on Greenhouse Gas Emissions and Soil Quality in Khost, Afghanistan. Sustainability, 12(16), 6508. https://doi.org/10.3390/su12166508 DOI: https://doi.org/10.3390/su12166508
  12. Kim, H. N., & Park, J. H. (2024). Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Applied Biological Chemistry, 67(1), 1.‏ doi: https://doi.org/10.1186/s13765-023-00849-4 DOI: https://doi.org/10.1186/s13765-023-00849-4
  13. Lal, R. (2020). Soil organic matter content and crop yield. Journal of Soil and Water Conservation, 75(2), 27A-32A. https://doi.org/10.2489/jswc.75.2.27A DOI: https://doi.org/10.2489/jswc.75.2.27A
  14. Li, S., Li, J., Li, G., Li, Y., Yuan, J., & Li, D. (2017). Effect of Different Organic Fertilizers Application on Soil Organic Matter Properties. Compost Science & Utilization, 25(sup1), S31–S36. https://doi.org/10.1080/1065657X.2017.1344160 DOI: https://doi.org/10.1080/1065657X.2017.1344160
  15. Murphy, B. (2015, June). Key soil functional properties affected by soil organic matter-evidence from published literature. In IOP conference series: Earth and environmental science (Vol. 25, No. 1, p. 012008). https:// DOI 10.1088/1755-1315/25/1/012008 DOI: https://doi.org/10.1088/1755-1315/25/1/012008
  16. Obaid, H., Ma, L., Nader, S. E., Hashimi, M. H., Sharifi, S., Kakar, H., ... & Ni, C. (2023). Heavy metal contamination status of water, agricultural soil, and plant in the Semiarid Region of Kandahar, Afghanistan. ACS Earth and Space Chemistry, 7(7), 1446-1458. https://doi.org/10.1021/ DOI: https://doi.org/10.1021/acsearthspacechem.3c00095
  17. Obaid, H., Shrestha, R. K., Liu, D., Elsayed, N. S., Ni, J., & Ni, C. (2022). Biofortification of Maize with Zinc and Its Effect on Human Health. Journal of Soil Science and Plant Nutrition, 22(2), 1792-1804. https://doi.org/10.1007/s42729-022-00772-5 DOI: https://doi.org/10.1007/s42729-022-00772-5
  18. Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, 1-20. DOI: https://doi.org/10.1007/978-3-030-61010-4_1
  19. Pallandt, M., Schrumpf, M., Lange, H., Reichstein, M., Yu, L., & Ahrens, B. (2025). Modelling the effect of climate–substrate interactions on soil organic matter decomposition with the Jena Soil Model. Biogeosciences, 22(7), 1907-1928.‏ https://doi.org/10.5194/bg-22-1907-2025, 2025 DOI: https://doi.org/10.5194/bg-22-1907-2025
  20. Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. (2003). Effect of soil organic carbon on soil water retention. Geoderma, 116(1–2), 61–76. https://doi.org/10.1016/S0016-7061(03)00094-6 DOI: https://doi.org/10.1016/S0016-7061(03)00094-6
  21. Sellier, A., Khaska, S., & La Salle, C. L. G. (2022). Assessment of the occurrence of 455 pharmaceutical compounds in sludge according to their physical and chemical properties: A review. Journal of Hazardous Materials, 426, 128104. https://doi.org/10.1016/j.jhazmat.2021.128104 DOI: https://doi.org/10.1016/j.jhazmat.2021.128104
  22. Shi, Y., Tai, K., Cui, Y., Zhang, R., Li, X., Ji, Y., & Yin, B. (2025). Effects of green manure planting on soil organic carbon in China: A meta-analysis. International Journal of Agricultural and Biological Engineering, 18(5), 198-204.‏ https://www.ijabe.org/index.php/ijabe/article/view/9709 DOI: https://doi.org/10.25165/j.ijabe.20251805.9709
  23. Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. (2020). A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change, 3, 98.‏ https://doi.org/10.3389/ffgc.2020.00098 DOI: https://doi.org/10.3389/ffgc.2020.00098
  24. Suvendran, S., Acevedo, M. F., Smithers, B., Walker, S. J., & Xu, P. (2025). Soil Fertility and Plant Growth Enhancement Through Compost Treatments Under Varied Irrigation Conditions. Agriculture, 15(7), 734. https://doi.org/10.3390/agriculture15070734 DOI: https://doi.org/10.3390/agriculture15070734
  25. Thapa, V. R., Ghimire, R., Adhikari, K. P., & Lamichhane, S. (2023). Soil organic carbon sequestration potential of conservation agriculture in arid and semi-arid regions: A review. Journal of Arid Environments, 217, 105028. https://doi.org/10.1016/j.jaridenv.2023.105028 DOI: https://doi.org/10.1016/j.jaridenv.2023.105028
  26. Țopa, D.-C., Căpșună, S., Calistru, A.-E., & Ailincăi, C. (2025). Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture, 15(9), 998. https://doi.org/10.3390/agriculture15090998 DOI: https://doi.org/10.3390/agriculture15090998
  27. Turabi, A. B., Habibi, S., Kakar, K., Aryan, S., Haidari, M. D., & Alipour, S. (2024). Optimizing Soybean Crop Performance through the Integrated Application of Organic and Chemical Fertilizers: A Study on Alkaline Soil in Afghanistan. Crops, 4(1), 82-94. https://doi.org/10.3390/crops4010007
  28. Turabi, A. B., Habibi, S., Kakar, K., Aryan, S., Haidari, M. D., & Alipour, S. (2024). Optimizing Soybean Crop Performance through the Integrated Application of Organic and Chemical Fertilizers: A Study on Alkaline Soil in Afghanistan. Crops, 4(1), 82-94.‏ https://doi.org/10.3390/crops4010007 DOI: https://doi.org/10.3390/crops4010007
  29. Yazdanpanah, A., & Bakhtiyari, M. (2023). Effects of Manure Mixing by Different Tillage Methods on Soil Bulk Density and Chemical Peroperties of Soil and Sugarbeet Yield. Applied Soil Research, 11 (3) 88-97. https://doi.org/10.30466/ASR.2023.121398
  30. Zewd, I., & Siban, M. (2021). The effects of alkalinity on physical and chemical properties of soil. Journal of Plant Biology and Agricultural Sciences, 3(2), 1–5. https://www.pulsus.com/scholarly-articles/the-effects-of-alkalinity-on-physical-and-chemical-properties-of-soil.pdf.
  31. Zhang, H., & Li, G. (2025). Long-Term Human Disturbance Accelerates Soil Carbon Loss in Earth's Driest Ecosystems. Global Change Biology, 31(9), e70489.‏ https://doi.org/10.1111/gcb.70489 DOI: https://doi.org/10.1111/gcb.70489
  32. Zhang, T. T., Duan, Y., Liang, J. M., Zhang, J., An, H., Xia, F., & Zhen-Yong, H. (2023). Effects of long-term fertilization on farmland fertilities and crop yields in farming-pastoral ecotone. Journal of Plant Nutrition and Fertilizers, 29(9), 1643-1653. https://doi.org/10.11674/zwyf.2023059