Main Article Content
Abstract
This paper compares two semi-analytical methods, the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM), for solving linear and nonlinear fractional differential equations. The comparison is based on error reduction, stability, and the effectiveness of each method for different types of equations. Using several examples, along with tables and graphs, the approximate solutions obtained are evaluated and compared with the exact solutions, with all computations performed in Mathematica. The results show that ADM provides an easy, efficient approximation for linear equations without requiring Adomian polynomials. However, for nonlinear equations, VIM converges faster and more accurately by selecting an appropriate Lagrange multiplier. Overall, VIM is identified as the more effective semi-analytical method for solving nonlinear fractional differential equations.
Keywords
Article Details
Copyright (c) 2025 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abdelrazec, A. H. (2008). Adomian Decomposition Method: Convergence Analysis and Numerical Approximations (Master’s thesis). McMaster University. https://macsphere.mcmaster.ca/handle/11375/21346
- Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 DOI: https://doi.org/10.1016/0022-247X(88)90170-9
- Al-Mazmumy, M. A. (2024). Efficient modified Adomian decomposition method for solving nonlinear fractional differential equations. International Journal of Analysis and Applications. https://doi.org/10.5899/ijaa.2024.2291-8639 DOI: https://doi.org/10.28924/2291-8639-22-2024-76
- Chakraverty, S., & M., R. (2023). Computational fractional dynamical systems. USA: Springer. https://doi.org/10.1007/978-3-031-29007-7
- Chauhan, J. P., & S. (2023). A semi-analytic method to solve nonlinear differential equations with arbitrary order. Results in Control and Optimization, 12, 1–12. https://doi.org/10.3934/rco.2023.12 DOI: https://doi.org/10.1016/j.rico.2023.100267
- Guo, P. (2019). Adomian decomposition method for a type of fractional differential equations. Journal of Applied Mathematics and Physics, 7(10), 2459–2466. https://doi.org/10.4236/jamp.2019.710166 DOI: https://doi.org/10.4236/jamp.2019.710166
- He, J. H. (1999). Variational iteration method – a kind of nonlinear analytical technique: Some examples. International Journal of Nonlinear Mechanics, 34(4), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J. H. (1999). Variational iteration method – a kind of nonlinear analytical technique: Some examples. International Journal of Nonlinear Mechanics, 34(4), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 DOI: https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J., & Wu, X.-H. (2007). Variational iteration method: New development and applications. Computers & Mathematics with Applications, 54, 881–894. https://doi.org/10.1016/j.camwa.2007.05.003
- Ismail, N. M. (2022). The modified variational iteration method to solve linear fractional differential equations. Journal of Advances in Mathematics and Computer Science, 37(8), 57–64. https://doi.org/10.9734/JAMCS/2022/v37i830472 DOI: https://doi.org/10.9734/jamcs/2022/v37i830472
- Kisela, T. (2008). Fractional differential equations and their applications. Springer. https://doi.org/10.1007/978-3-540-76574-5
- Kisela, T. (2008). Fractional differential equations and their applications. Springer.
- Mainardi, R. G. (2008). Fractional calculus: Integral and differential equations of fractional order. Udine, Italy: Springer.
- Okiotor, F. O. N. (2020). On the computation of the Lagrange multiplier for the variational iteration method (VIM) for solving differential equations. Journal of Advances in Mathematics and Computer Science, 35(3), 74–92. https://doi.org/10.9734/JAMCS/2020/v35i330174 DOI: https://doi.org/10.9734/jamcs/2020/v35i330261
- Wazwaz, A. M. (2009). Partial differential equations and solitary waves theory. Springer. https://doi.org/10.1007/978-0-387-68608-8 DOI: https://doi.org/10.1007/978-3-642-00251-9
- Wazwaz, A. M. (2010). Linear and nonlinear integral equations: Methods and applications. Springer. https://doi.org/10.1007/978-1-4419-1600-3
- Wazwaz, A. M. (2011). A reliable modification of the Adomian decomposition method. Applied Mathematics and Computation, 217(12), 5385–5393. https://doi.org/10.1016/j.amc.2011.03.081 DOI: https://doi.org/10.1016/j.amc.2011.03.081
- Wu, J. (2008). Variational iteration method: New development and applications. Computers & Mathematics with Applications, 44(7–8), 877–894. https://doi.org/10.1016/j.camwa.2007.03.005 DOI: https://doi.org/10.1016/j.camwa.2007.03.005
- Wu, J., & Wu, J. A. (2007). Variational iteration method: New development and applications. Computers & Mathematics with Applications,54(7–8),881–894. https://doi.org/10.1016/j.camwa.2007.05.003 DOI: https://doi.org/10.1016/j.camwa.2006.12.083
- Zill, D. G., & Rettig, M. R. (2009). Differential equations with boundary-value problems (8th ed.). Brooks/Cole.
- (Printed book — no DOI.)
References
Abdelrazec, A. H. (2008). Adomian Decomposition Method: Convergence Analysis and Numerical Approximations (Master’s thesis). McMaster University. https://macsphere.mcmaster.ca/handle/11375/21346
Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 DOI: https://doi.org/10.1016/0022-247X(88)90170-9
Al-Mazmumy, M. A. (2024). Efficient modified Adomian decomposition method for solving nonlinear fractional differential equations. International Journal of Analysis and Applications. https://doi.org/10.5899/ijaa.2024.2291-8639 DOI: https://doi.org/10.28924/2291-8639-22-2024-76
Chakraverty, S., & M., R. (2023). Computational fractional dynamical systems. USA: Springer. https://doi.org/10.1007/978-3-031-29007-7
Chauhan, J. P., & S. (2023). A semi-analytic method to solve nonlinear differential equations with arbitrary order. Results in Control and Optimization, 12, 1–12. https://doi.org/10.3934/rco.2023.12 DOI: https://doi.org/10.1016/j.rico.2023.100267
Guo, P. (2019). Adomian decomposition method for a type of fractional differential equations. Journal of Applied Mathematics and Physics, 7(10), 2459–2466. https://doi.org/10.4236/jamp.2019.710166 DOI: https://doi.org/10.4236/jamp.2019.710166
He, J. H. (1999). Variational iteration method – a kind of nonlinear analytical technique: Some examples. International Journal of Nonlinear Mechanics, 34(4), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1
He, J. H. (1999). Variational iteration method – a kind of nonlinear analytical technique: Some examples. International Journal of Nonlinear Mechanics, 34(4), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 DOI: https://doi.org/10.1016/S0020-7462(98)00048-1
He, J., & Wu, X.-H. (2007). Variational iteration method: New development and applications. Computers & Mathematics with Applications, 54, 881–894. https://doi.org/10.1016/j.camwa.2007.05.003
Ismail, N. M. (2022). The modified variational iteration method to solve linear fractional differential equations. Journal of Advances in Mathematics and Computer Science, 37(8), 57–64. https://doi.org/10.9734/JAMCS/2022/v37i830472 DOI: https://doi.org/10.9734/jamcs/2022/v37i830472
Kisela, T. (2008). Fractional differential equations and their applications. Springer. https://doi.org/10.1007/978-3-540-76574-5
Kisela, T. (2008). Fractional differential equations and their applications. Springer.
Mainardi, R. G. (2008). Fractional calculus: Integral and differential equations of fractional order. Udine, Italy: Springer.
Okiotor, F. O. N. (2020). On the computation of the Lagrange multiplier for the variational iteration method (VIM) for solving differential equations. Journal of Advances in Mathematics and Computer Science, 35(3), 74–92. https://doi.org/10.9734/JAMCS/2020/v35i330174 DOI: https://doi.org/10.9734/jamcs/2020/v35i330261
Wazwaz, A. M. (2009). Partial differential equations and solitary waves theory. Springer. https://doi.org/10.1007/978-0-387-68608-8 DOI: https://doi.org/10.1007/978-3-642-00251-9
Wazwaz, A. M. (2010). Linear and nonlinear integral equations: Methods and applications. Springer. https://doi.org/10.1007/978-1-4419-1600-3
Wazwaz, A. M. (2011). A reliable modification of the Adomian decomposition method. Applied Mathematics and Computation, 217(12), 5385–5393. https://doi.org/10.1016/j.amc.2011.03.081 DOI: https://doi.org/10.1016/j.amc.2011.03.081
Wu, J. (2008). Variational iteration method: New development and applications. Computers & Mathematics with Applications, 44(7–8), 877–894. https://doi.org/10.1016/j.camwa.2007.03.005 DOI: https://doi.org/10.1016/j.camwa.2007.03.005
Wu, J., & Wu, J. A. (2007). Variational iteration method: New development and applications. Computers & Mathematics with Applications,54(7–8),881–894. https://doi.org/10.1016/j.camwa.2007.05.003 DOI: https://doi.org/10.1016/j.camwa.2006.12.083
Zill, D. G., & Rettig, M. R. (2009). Differential equations with boundary-value problems (8th ed.). Brooks/Cole.
(Printed book — no DOI.)