Main Article Content

Abstract

The demand for recombinant therapeutic proteins has increased significantly, creating an ongoing need to enhance existing expression systems and develop new approaches to meet this growing demand. Initially, therapeutic proteins were extracted from human tissues or blood. However, this method presents several disadvantages, such as insufficient biological material for industrial-scale production and the risk of contamination by pathogens. As a result, the use of genetically engineered products has become a safer alternative. Since the advent of recombinant DNA technology, recombinant bacterial expression systems, particularly Escherichia coli (E. coli), have played a central role in the production of therapeutic proteins. This discussion focuses on recombinant therapeutic proteins, with a particular emphasis on those produced in E. coli, which have seen widespread use in the industry.

Keywords

Escherichia Coli Expression Systems Recombinant Insulin Recombinant Technology Therapeutic Proteins

Article Details

How to Cite
Lemar, G. S. (1403). Investigating the Production of Therapeutic Proteins Using Microbes. Journal of Natural Sciences – Kabul University, 7(4), 371–387. https://doi.org/10.62810/jns.v7i4.423

References

  1. Abinaya, R. V., & Viswanathan, P. (2021). Biotechnology-based therapeutics. In Translational Biotechnology: A Journey from Laboratory to Clinics (Issue January 2021). https://doi.org/10.1016/B978-0-12-821972-0.00019-8
  2. Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98(12), 5301–5317. https://doi.org/10.1007/s00253-014-5732-5
  3. Bill, R. M. (2015). Recombinant protein subunit vaccine synthesis in microbes: A role for yeast? Journal of Pharmacy and Pharmacology, 67(3), 319–328. https://doi.org/10.1111/jphp.12353
  4. Burnett, M. J. B., & Burnett, A. C. (2020). Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet, 2(2), 121–132. https://doi.org/10.1002/ppp3.10073
  5. Chen, R. (2012). Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30(5), 1102–1107. https://doi.org/10.1016/j.biotechadv.2011.09.013
  6. Dimitrov, D. S. (2012). Chapter 1: Therapeutic proteins. In Methods in Molecular Biology (Vol. 899, pp. 1–26). https://doi.org/10.1007/978-1-61779-921-1
  7. Gomes, C., Oliveira, F., Isabel Vieira, S., & Sofia Duque, A. (2020). Prospects for the Production of Recombinant Therapeutic Proteins and Peptides in Plants: Special Focus on Angiotensin I-Converting Enzyme Inhibitory (ACEI) Peptides. In Genetic Engineering - A Glimpse of Techniques and Applications (pp. 1–27). https://doi.org/10.5772/intechopen.84419
  8. Graumann, K., & Premstaller, A. (2006). Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnology Journal, 1(2), 164–186. https://doi.org/10.1002/biot.200500051
  9. Gupta, V., Sengupta, M., Prakash, J., & Charan, B. (2017). Basic and Applied Aspects of Biotechnology.
  10. Khan, F. A. (2015). Biotechnology fundamentals, second edition. In Biotechnology Fundamentals, Second Edition. https://doi.org/10.1201/b19517
  11. Khan, S., Ullah, M. W., Siddique, R., Nabi, G., Manan, S., Yousaf, M., & Hou, H. (2016). Role of recombinant DNA technology to improve life. International Journal of Genomics, 2016(2405954), 14. https://doi.org/10.1155/2016/2405954
  12. Kim, M. K., Kim, T. S., Joung, Y., Han, J. H., & Kim, S. B. (2016). Taibaiella soli sp. Nov., isolated from pine forest soil. International Journal of Systematic and Evolutionary Microbiology, 66(8), 3230–3234. https://doi.org/10.1099/ijsem.0.001172
  13. Luan, C., Zhang, H. W., Song, D. G., Xie, Y. G., Feng, J., & Wang, Y. Z. (2014). Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Applied Microbiology and Biotechnology, 98(8), 3651–3658. https://doi.org/10.1007/s00253-013-5246-6
  14. Macpherson, I. R. J., Lindsay, C. R., & Reed, N. S. (2009). Recombinant human epoetin beta in the treatment of chemotherapy-related anemia. Therapeutics and Clinical Risk Management, 5(1), 261–270. https://doi.org/10.2147/tcrm.s3320
  15. Michael, R., & Kohlmann, L. (1998). Recombinant Human Insulin Analogues. BioDrugs, 9(5), 363–374. https://doi.org/10.2165/00063030-199809050-00002
  16. Nascimento, I. P., & Leite, L. C. C. (2012). Recombinant vaccines and the development of new vaccine strategies. Brazilian Journal of Medical and Biological Research, 45(12), 1102–1111. https://doi.org/10.1590/S0100-879X2012007500142
  17. Overton, T. W. (2014). Recombinant protein production in bacterial hosts. Drug Discovery Today, 19(5), 590–601. https://doi.org/10.1016/j.drudis.2013.11.008
  18. Pollet, J., Chen, W. H., & Strych, U. (2021). Recombinant protein vaccines, a proven approach against coronavirus pandemics. Advanced Drug Delivery Reviews, 170, 71–82. https://doi.org/10.1016/j.addr.2021.01.001
  19. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5(APR), 1–17. https://doi.org/10.3389/fmicb.2014.00172
  20. Sreekrishna, V. (2008). Bioethics and Biosaffety in Biotechnology.
  21. Swiech, K., Picanço-Castro, V., & Covas, D. T. (2012). Human cells: New platform for recombinant therapeutic protein production. Protein Expression and Purification, 84(1), 147–153. https://doi.org/10.1016/j.pep.2012.04.023
  22. Tan, X., Zhang, R. G., Meng, T. Y., Liang, H. Z., & Lv, J. (2014). Taibaiella chishuiensis sp. nov., isolated from freshwater. International Journal of Systematic and Evolutionary Microbiology, 64(PART 5), 1795–1801. https://doi.org/10.1099/ijs.0.060269-0
  23. Thieman, W., & Palladino, M. (2014). Introduction to Biotechnology. In British Library Cataloguing-in-Publication Data.
  24. Xie, Y., Han, X., & Miao, Y. (2018). An Effective Recombinant Protein Expression and Purification System in Saccharomyces cerevisiae. Current Protocols in Molecular Biology, 123(1), 1–16. https://doi.org/10.1002/cpmb.62
  25. Zieliński, M., Romanik-Chruścielewska, A., Mikiewicz, D., Łukasiewicz, N., Sokołowska, I., Antosik, J., Sobolewska-Ruta, A., Bierczyńska-Krzysik, A., Zaleski, P., & Płucienniczak, A. (2019). Expression and purification of recombinant human insulin from E. coli 20 strain. Protein Expression and Purification, 157(November 2018), 63–69. https://doi.org/10.1016/j.pep.2019.02.002