Main Article Content

Abstract

Farey sequences are sets of irreducible fractions between 0 and 1, arranged in ascending order, with denominators less than or equal to a given natural number n. Each Farey sequence begins with 0/1 and ends with 1/1 and contains only fractions less than or equal to one. This paper presents a theoretical and analytical review of Farey sequences, focusing on their structural properties and mathematical significance. The investigation highlights the wide-ranging applications of these sequences in number theory, discrete mathematics, combinatorics, cryptography, spatial statistics, and even physics and economics—emphasizing their interdisciplinary relevance. A key property examined is the relationship between consecutive terms, characterized by the determinant condition ad−bc=1ad - bc = 1ad−bc=1, which reflects the adjacency of neighboring fractions. The paper also explores the mediant property used to generate new fractions within the sequence. Additionally, it discusses the role of Farey sequences in providing optimal rational approximations to irrational numbers, demonstrating their utility in both pure and applied mathematics.

Keywords

Adjacency Property Euler Function Farey Fractions Farey Sequences Mediant Rational Approximation

Article Details

How to Cite
Sadat, S. (2025). Theoretical Analysis of Farey Sequences of Order n and Their Mathematical Properties. Journal of Natural Sciences – Kabul University, 8(1), 113–91. https://doi.org/10.62810/jns.v8i1.401

References

  1. Ainsworth, J., Dawson, M., Pianta, J., & Warwick, J. (2012). The Farey sequences. University of Edinburgh. Link
  2. Alladi, K. (1975). A Farey sequence of Fibonacci numbers, The Fibonacci Quarterly, 13(1), 1-10. http://doi.org/10.1112/S0217751X00013153 DOI: https://doi.org/10.1080/00150517.1975.12430677
  3. Andrews, G. E. (1994). Number theory. Courier Corporation. Inc. New York.
  4. Apostol, T. M. (1998). Introduction to analytic number theory. Springer Science & Business Media.
  5. Bagchi, S. (2024). Diophantine approximation using Farey sequences. National High School Journal of Science, 6(1), 1-12. Link
  6. Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of 1/f noise. Physical Review Letters, 59(4), 381-384. http://doi.org/10.1103/PhysRevLett.59.381 DOI: https://doi.org/10.1103/PhysRevLett.59.381
  7. Beck, M., & Robins, S. (2007). Computing the continuous discretely: Integer-point enumeration in polyhedral. Springer.
  8. Beiler, A. H. (1964). Recreations in the theory of numbers. Dover Publications.
  9. Brentjes, A. J. (1981). Multidimensional continued fraction algorithms. Mathematical Centre Tracts 145. Mathematisch Centrum.
  10. Burton, D. M. (2011). Elementary number theory (7th ed.) McGraw-Hill.
  11. Cauchy, A.-L. (1816). Demonstration d’un theorem curieux sur les fractions. Journal de I’Ecole Polytechnique, 9, 99-101. Link
  12. Das, S., Halder, K., Pratihar, S., & Bhowmick, P. (2015). Properties of Farey sequences and their applications to digital image processing. Link
  13. Farey, J. (1816). On a Curious property of vulgar fractions. The Philosophical Magazine and Journal, 47(217), 385-386. Link DOI: https://doi.org/10.1080/14786441608628487
  14. Fernstrom, R. (2017). Farey Fractions (U.U.D.M. Project Report 2017:24). Department of Mathematics, Uppsala University. Link
  15. Ford, L. R. (1938). Fraction. American Mathematical Monthly, 45(9), 586-601. Link DOI: https://doi.org/10.1080/00029890.1938.11990863
  16. Franel, J., & Landau, E. (1924). Les suites de Farey at le problem des nombres premiers. Gottinger Nachrichten, 1924, 198-206.
  17. Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete mathematics: A Foundation for Computer Science. Addison-Wesley.
  18. Hardy, G. H. & Wright, E. M. (2008). An Introduction to the theory of numbers (6thed.). Oxford University press. DOI: https://doi.org/10.1093/oso/9780199219858.001.0001
  19. Kanemitsu, S., & Yoshimoto, M. (1996). Farey sequences and the Riemann hypothesis. Acta Arithmetica, 75(4), 351-375. http://doi.org/10.4064/aa-75-4-351-374 DOI: https://doi.org/10.4064/aa-75-4-351-374
  20. Klein, F. (2010). Elementary mathematics from an advanced standpoint: Geometry (Dover reprint ed.) Dover Publications.
  21. Lagarias, J. C. (1995). The Farey series and the Riemann hypothesis. Frontier in Number Theory, Physics, and Geometry 1, 301-314. http://doi.org/10.2307/2695443 DOI: https://doi.org/10.2307/2695443
  22. Leveque, W. J. (1996). Fundamentals of number theory. Dover Publications.
  23. Matveev, A. O. (2017). Farey sequences: Duality and maps between subsequences. De Gruyter. http://doi.org/10.1515/9783110547665 DOI: https://doi.org/10.1515/9783110547665
  24. Niven, I., Zuckerman, H. S. & Montgomery, H. L. (1991). An Introduction to the theory of numbers. John Wiley & Sons.
  25. Rosen, K.H. (2011). Elementary Number theory and its applications (6th ed.). Publisher.
  26. Sellke, M. (2017). Farey sequence. Retrieved from Link
  27. Smith, J. (2010). Properties of Farey sequences and their applications. [Master’s thesis].
  28. Sukhoy, V., & Stoytchev, A. (2021). Formulas and Algorithms for the length of a Farey sequence. Scientific Report, 11(1), Article number: 22218. http://doi.org/10.1038/s41598-021-99545-w DOI: https://doi.org/10.1038/s41598-021-99545-w
  29. Tamang, B. B., Sharma, S. R. K., Lawaju, S. D., & Singh, A. (2022). Some characteristics of the Farey sequences with Ford circles. Nepal Journal of Mathematical Sciences, 4(1), 69-76. http://doi.org?10.3126/njmathsci.v4i1.53159 DOI: https://doi.org/10.3126/njmathsci.v4i1.53159
  30. Tomas, R. (2014). From Farey sequences to Resonance diagrams. Physical Review Special Topics-Accelerators and Beams, 17(1), 014001. http://doi.org/10.1103/PhysRevSTAB.17.014001 DOI: https://doi.org/10.1103/PhysRevSTAB.17.014001
  31. Zukin, D. (2016). The Farey sequence and its Niche(s). Journal of Mathematical Sciences, 45(3), 112-125. Retrieved from Link.