Main Article Content

Abstract

This study analyzes and compares the explicit Runge-Kutta methods for solving first-order linear differential equations. The methods examined include the Forward Euler method, Heun's method, and fourth-order Runge-Kutta method. The research methodology involved stability analysis and convergence studies to evaluate the performance of these methods. The results indicate that the fourth-order Runge-Kutta method offers the best performance because of its high convergence rate and wider stability regions, whereas the Forward Euler method has the smallest stability region and lower convergence accuracy. Heun's method also demonstrates satisfactory performance in terms of stability and convergence but is less effective compared to the fourth-order Runge-Kutta method. This study is particularly significant in enhancing the understanding of the accuracy and stability of explicit numerical methods for solving differential equations, showing that the fourth-order Runge-Kutta method is more efficient, in terms of both convergence and stability, for the problems under consideration.

Keywords

Convergence Differential Equations Numerical Methods Runge-Kutta Methods Stability

Article Details

How to Cite
Rahimi, H., Royesh, A. S., & Hashimi, N. (2025). Comparative Analysis of Explicit Runge-Kutta Methods for Solving First-Order Linear Ordinary Differential Equations. Journal of Natural Sciences – Kabul University, 8(1), 69–43. https://doi.org/10.62810/jns.v8i1.397

References

  1. Ji, X., & Zhou, J. (2018). Solving High-Order Uncertain Differential Equations via Runge–Kutta Method. IEEE Transactions on Fuzzy Systems, 26(3), 1379–1386. https://doi.org/10.1109/TFUZZ.2017.2723350 DOI: https://doi.org/10.1109/TFUZZ.2017.2723350
  2. Al Ameely, A., & Albukhuttar, A. (2023). Solving system of Euler's equations using Runge –Kutta methods. Journal of University of Anbar for Pure Science, 17(2), 265–268. https://doi.org/10.37652/juaps.2023.181576 DOI: https://doi.org/10.37652/juaps.2023.181576
  3. Aliyi Koroche, K. (2021a). Numerical Solution of First Order Ordinary Differential Equation by Using Runge-Kutta Method. International Journal of Systems Science and Applied Mathematics, 6(1), 1. https://doi.org/10.11648/j.ijssam.20210601.11
  4. Aliyi Koroche, K. (2021b). Numerical Solution of First Order Ordinary Differential Equation by Using Runge-Kutta Method. International Journal of Systems Science and Applied Mathematics, 6(1), 1. https://doi.org/10.11648/j.ijssam.20210601.11 DOI: https://doi.org/10.11648/j.ijssam.20210601.11
  5. Biswas, A., Ketcheson, D. I., Roberts, S., Seibold, B., & Shirokoff, D. (2023). Explicit Runge–Kutta methods that alleviate order reduction [Preprint]. arXiv. https://arxiv.org/abs/2310.02817
  6. Chauhan, V., & Srivastava, P. K. (2019). Computational techniques based on runge-kutta method of various order and type for solving differential equations. International Journal of Mathematical, Engineering and Management Sciences, 4(2), 375–386. https://doi.org/10.33889/ijmems.2019.4.2-030 DOI: https://doi.org/10.33889/IJMEMS.2019.4.2-030
  7. Islam, Md. A. (2015a). A Comparative Study on Numerical Solutions of Initial Value Problems (IVP) for Ordinary Differential Equations (ODE) with Euler and Runge Kutta Methods. American Journal of Computational Mathematics, 05(03), 393–404. https://doi.org/10.4236/ajcm.2015.53034
  8. Islam, Md. A. (2015b). A Comparative Study on Numerical Solutions of Initial Value Problems (IVP) for Ordinary Differential Equations (ODE) with Euler and Runge Kutta Methods. American Journal of Computational Mathematics, 05(03), 393–404. https://doi.org/10.4236/ajcm.2015.53034 DOI: https://doi.org/10.4236/ajcm.2015.53034
  9. Kaur, M., Bhatti, J., Kumar, S., & Thota, S. (2024). Explicit Runge-Kutta Method for Evaluating Ordinary Differential Equations of type vvi = f (u, v, v′). WSEAS Transactions on Mathematics, 23, 167–175. https://doi.org/10.37394/23206.2024.23.20 DOI: https://doi.org/10.37394/23206.2024.23.20
  10. Kumar, I., & Bhardwaj, R. (2023). Numerical simulation of ordinary differential equation by Euler and Runge–Kutta technique. Journal of Electronics, Computer Networking and Applied Mathematics, 36, 8–17. https://doi.org/10.55529/jecnam.36.8.17 DOI: https://doi.org/10.55529/jecnam.36.8.17
  11. Lee, K. C., Senu, N., Ahmadian, A., Ibrahim, S. N. I., & Baleanu, D. (2020). Numerical study of third-order ordinary differential equations using a new class of two derivative Runge-Kutta type methods. Alexandria Engineering Journal, 59(4), 2449–2467. https://doi.org/10.1016/j.aej.2020.03.008 DOI: https://doi.org/10.1016/j.aej.2020.03.008
  12. Mechee, M. S., Fawzi, F. A., & Abdullah, S. M. (2024). Construction of Numerical RKM-Method for Solving a Class of Twelves-Order Ordinary Differential Equations. Iraqi Journal of Science, 65(4), 2074–2086. https://doi.org/10.24996/ijs.2024.65.4.25 DOI: https://doi.org/10.24996/ijs.2024.65.4.25
  13. Nupur, S., Akter, R., Tamanna, T. R., & Akter, P. (2023). Maximizing Accuracy: Advancements in Numerical Methods for Ordinary Differential Equations. Journal of Electronics,Computer Networking and Applied Mathematics, 35, 18–27. https://doi.org/10.55529/jecnam.35.18.27 DOI: https://doi.org/10.55529/jecnam.35.18.27
  14. Paudel, D. R., & Bhatt, M. R. (n.d.). Comparative study of Euler's method and Runge-Kutta method to solve an ordinary differential equation through a computational approach. Academic Journal of Mathematics Education, 6–7. https://www.intmath.com/ DOI: https://doi.org/10.3126/ajme.v6i1.63802
  15. Stephen, O. A., Adebowale, A. M., Senapon, W. A., Tolulope, K. M., & Jamiu, A. R. (2024). Comparative Analysis of Some New Runge-Kutta Type Techniques on the Solution of First Order Initial Value Problem in Ordinary Differential Equations. International Journal of Scientific Advances, 5(3). https://doi.org/10.51542/ijscia.v5i3.5 DOI: https://doi.org/10.51542/ijscia.v5i3.5
  16. Suryaningrat, W., Ashgi, R., & Purwani, S. (2020a). Order Runge-Kutta with Extended Formulation for Solving Ordinary Differential Equations. International Journal of Global Operations Research, 1(4), 160–167. http://www.iorajournal.org/index.php/ijgor/index
  17. Suryaningrat, W., Ashgi, R., & Purwani, S. (2020b). Order Runge-Kutta with Extended Formulation for Solving Ordinary Differential Equations. International Journal of Global Operations Research, 1(4), 160–167. http://www.iorajournal.org/index.php/ijgor/index DOI: https://doi.org/10.47194/ijgor.v1i4.61
  18. Ogunrinde, R. B. (2012). On Some Numerical Methods for Solving Initial Value Problems in Ordinary Differential Equations. IOSR Journal of Mathematics, 1(3), 25–31. https://doi.org/10.9790/5728-0132531 DOI: https://doi.org/10.9790/5728-0132531
  19. Trofimets, E. N., & Trofimets, V. Y. (2020). Research of numerical methods for solving ordinary differential equations in MS Excel. Journal of Physics: Conference Series, 1691(1). https://doi.org/10.1088/1742-6596/1691/1/012049 DOI: https://doi.org/10.1088/1742-6596/1691/1/012049
  20. Vena Yurinda Saragih, Giovani Br Surbakti, Nia Elovani Br Munthe, & Syabila Amalia Wardani. (2024). Implementasi Metode Runge-Kutta dalam Simulasi Lintasan Peluru pada Medan Gravitasi Bumi. Bilangan : Jurnal Ilmiah Matematika, Kebumian Dan Angkasa, 2(5), 41–50. https://doi.org/10.62383/bilangan.v2i5.272 DOI: https://doi.org/10.62383/bilangan.v2i5.272
  21. Workineh, Y., Mekonnen, H., & Belew, B. (2024). Numerical methods for solving second-order initial value problems of ordinary differential equations with Euler and Runge-Kutta fourth-order methods. Frontiers in Applied Mathematics and Statistics, 10. https://doi.org/10.3389/fams.2024.1360628 DOI: https://doi.org/10.3389/fams.2024.1360628
  22. Yousif, M. (2020). Article 3 Part of the Ordinary Differential Equations and Applied Dynamics Commons Recommended Citation Recommended Citation yousif. In Emirates Journal for Engineering Research (Vol. 25). https://scholarworks.uaeu.ac.ae/ejerAvailableat:https://scholarworks.uaeu.ac.ae/ejer/vol25/iss3/3
  23. Zhang, L., Zhang, X., & Guan, T. (2017). Numerical Calculation Methods and Computer Implementation of Ordinary Differential Equation Initial Value Problem. 440–443. https://doi.org/10.2991/FMSMT-17.2017.93 DOI: https://doi.org/10.2991/fmsmt-17.2017.93
  24. Zulkifli, N. S., Samsudin, N., & Yusof, N. M. M. (2022). Improving Euler Method using Centroidal-Polygon Scheme for Better Accuracy in Resistor-Capacitor Circuit Equation. Journal of Physics: Conference Series, 2319(1). https://doi.org/10.1088/1742-6596/2319/1/012023 DOI: https://doi.org/10.1088/1742-6596/2319/1/012023