Main Article Content

Abstract

Microwave radiation is a kind of electromagnetic energy that has a frequency between 0.3 GHz and 300 GHz and a wavelength between 1 mm and 1 m. Microwave energy has grown in popularity as a heating technology in organic synthesis, mainly due to its increased reaction rate, lower energy consumption, higher yields, enhanced selectivity, ease of operation, and environmental friendliness. Since 1980, the usage of microwave reaction systems in chemistry as a strong, dependable energy source has expanded to include a wide range of processes, including dehydration, polymerization, extraction, synthesis of fine compounds, and organic synthesis. The influence of microwave radiation on reaction rates, yields, reaction times, and selectivity of particular types of organic reactions will be the main emphasis of this review paper.

Keywords

Microwave Radiation Organic Synthesis Extraction Selectivity Reaction Rates

Article Details

Author Biography

Mohammad Tahir Aminzai, Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan

روغن خام نباتی که از طریق فشار میخانیکی یا استخراج با محلل به دست می‌آید، شامل انواع ناخالصی‌های است که به طور طبیعی در دانه‌های روغنی موجود می‌باشند. روغن‌های خام نباتی تقریباً از ۹۸ درصد ترای گلیسراید و سایر مرکبات مانند پروتین‌ها، ویتامین‌ها، اسیدهای شحمی آزاد، صمغ‌ها، رزین‌ها، الدیهاید‌ها، کیتون‌ها، فاسفیت‌ها و غیره به نسبت جزئی تشکیل شده اند. به غیر از روغن‌ زیتون، متباقی روغن‌های خام مانند روغن‌های سویا، جواری، گل آفتاب‌پرست وغیره را نمی‌توان بدون انجام پروسه‌های تصفیه‌سازی مستقیماً مصرف کرد. هدف از تصفیه روغن، به دست آوردن کیفیت بهتر، بی‌بو، رنگ روشن‌تر، پایداری طولانی‌تر و صحی ساختن آن می‌باشد. در این مقاله مروری تصفیه فزیکی و کیمیاوی روغن خام نباتی مورد بحث قرار گرفته و در نتیجه فواید و نواقص هر دو میتود به تفصیل توضیح داده شده است.

 

How to Cite
Aminzai, M. T. ., & Zhwand, A. K. (2025). Investigating the Effects of Microwave Energy on Synthesis of Organic Compounds. Journal of Natural Sciences – Kabul University, 6(4), 155–166. https://doi.org/10.62810/jns.v6i4.358

References

  1. (1) Gaba M, Dhingra N. Microwave chemistry: General features and applications. Ind J Pharm Edu Res. 2011 Apr 1;45(2):175-83.
  2. (2) Kappe CO. Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition. 2004 Nov 26;43(46):6250-84.
  3. (3) Sweygers N, Kamali M, Aminabhavi TM, Dewil R, Appels L. Efficient microwave-assisted production of furanics and hydrochar from bamboo (Phyllostachys nigra “Boryana”) in a biphasic reaction system: effect of inorganic salts. Biomass Conversion and Biorefinery. 2022 Jan;12(1):173-81.
  4. (4) Ameta SC, Punjabi PB, Ameta R, Ameta C, editors. Microwave-assisted organic synthesis: a green chemical approach. CRC Press; 2014 Dec 22.
  5. (5) Kingston HM, Jassie LB. Introduction to microwave sample preparation: theory and practice. 1988.
  6. (6) Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Advances in microwave synthesis of nanoporous materials. Advanced Materials. 2021 Dec;33(48):2103477.
  7. (7) Keglevich G, editor. Milestones in Microwave Chemistry. Switzerland: Springer International Publishing; 2016 Mar 22.
  8. (8) Palma V, Barba D, Cortese M, Martino M, Renda S, Meloni E. Microwaves and heterogeneous catalysis: A review on selected catalytic processes. Catalysts. 2020 Feb 18;10(2):246.
  9. (9) Surati MA, Jauhari S, Desai KR. A brief review: Microwave assisted organic reaction. Archives of Applied Science Research. 2012;4(1):645-61.
  10. (10) Gedye RN, Rank W, Westaway KC. The rapid synthesis of organic compounds in microwave ovens. II. Canadian journal of chemistry. 1991 Apr 1;69(4):706-11.
  11. (11) Gedye RN, Smith FE, Westaway KC. Canadian journal of chemistry. 1988: 66:17.
  12. (12) Bogdal D, Lukasiewicz M, Pielichowski J, Miciak A, Bednarz S. Microwave-assisted oxidation of alcohols using Magtrieve™. Tetrahedron. 2003 Jan 27;59(5):649-53.
  13. (13) Zhang Z, Zhou L, Zhang M, Wu H, Chen Z. One billion hertz microwave a thermal action on the synthesis of aromatic esters at normal pressure. Synthetic Communications. 2001 Jan 1;31(16):2435-9.
  14. (14) Zhou XS, Liu BJ, Luo FW, Zhang WY, Song H. Novel Brønsted-acidic ionic liquids based on benzothiazolium cations as catalysts for esterification reactions. journal of the serbian chemical society. 2011;76(12):1607-15.
  15. (15) Kokel A, Schäfer C, Török B. Microwave-assisted reactions in green chemistry. Green Chemistry and Chemical Engineering. A Volume in the Encyclopedia of Sustainability Science and Technology,. 2018:573-612.
  16. (16) Jones GB, Chapman BJ. Decarboxylation of indole-2-carboxylic acids: improved procedures. The Journal of Organic Chemistry. 1993 Sep;58(20):5558-9.
  17. (17) Ley SV, Leach AG, Storer RI. A polymer-supported thionating reagent. Journal of the Chemical Society, Perkin Transactions 1. 2001(4):358-61.
  18. (18) Laurent R, Laporterie A, Dubac J, Berlan J, Lefeuvre S, Audhuy M. Specific activation by microwaves: myth or reality?. The Journal of Organic Chemistry. 1992 Dec;57(26):7099-102.
  19. (19)