Main Article Content
Abstract
Quinoline is a preferred scaffold that emerges as a significant assembly motif for the creation of novel pharmacological molecules among heterocyclic compounds. Due to the extensive spectrum of biological and pharmacological properties of quinoline and its derivatives, numerous synthetic pathways have been created for their synthesis. Quinoline and its derivatives tested with diverse biological activity constitute an important class of compounds for new drug development. As a result, these compounds have been produced as intentional structures, and their biological activities have been assessed by numerous scientific communities. This review will investigate the quinoline heterocyclic ring, also the antimalarial and anticancer biological effects of quinoline derivatives.
Keywords
Article Details
Copyright (c) 2024 Reserved for Kabul University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ferlin MG, Chiarelotto G, Gasparotto V, Via LD, Pezzi V, Barzon L, et al. Synthesis and in Vitro and in Vivo Antitumor Activity of 2-Phenylpyrroloquinolin-4-ones. 2005;3417–27.
- Gasparotto V, Castagliuolo I, Chiarelotto G, Pezzi V, Montanaro D, Brun P, et al. Synthesis and biological activity of 7-phenyl-6,9-dihydro-3H-pyrrolo[3,2-f] quinolin-9-ones: A new class of antimitotic agents devoid of aromatase activity. J Med Chem. 2006;49(6):1910–5.
- Chen Y, Zhao Y, Lu C, Tzeng C, Wang J. Synthesis , cytotoxicity , and anti-inflammatory evaluation of 2- ( furan-2-yl ) -4- ( phenoxy ) quinoline derivatives . Part 4. 2006;14:4373–8.
- Nasseri MA, Zakerinasab B, Kamayestani S. Proficient Procedure for Preparation of Quinoline Derivatives Catalyzed by NbCl 5 in Glycerol as Green Solvent . J Appl Chem. 2015;2015:1–7.
- Horn J, Marsden SP, Nelson A, House D, Weingarten GG. Convergent , Regiospecific Synthesis of Quinolines from o -Aminophenylboronates. 2008;(6):10–3.
- Prajapati D. Ionic Liquid – an Efficient Recyclable System for the Synthesis of 2 , 4-Disubstituted Quinolines via Meyer – Schuster Rearrangement. 2008;
- Prajapati D, Boruah RC. Indium ( III ) Trifluoromethanesulfonate : An Efficient Reusable Catalyst for the Alkynylation – Cyclization of 2-Aminoaryl Ketones and Synthesis of 2 , 4-Disubstituted Quinolines. 2008;(5):655–8.
- Zhao J, Peng C, Liu L, Wang Y, Zhu Q. Synthesis of 2-alkoxy(aroxy)-3-substituted Quinolines by DABCO-promoted cyclization of o-alkynylaryl isocyanides. J Org Chem. 2010;75(21):7502–4.
- Mamaghani M, Tabatabaeian K, Araghi R, Fallah A, Hossein Nia R. An Efficient, Clean, and Catalyst-Free Synthesis of Fused Pyrimidines Using Sonochemistry. Org Chem Int. 2014;2014:1–9.
- Kowsari E, Mallakmohammadi M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason Sonochem [Internet]. 2011;18(1):447–54. Available from: http://dx.doi.org/10.1016/j.ultsonch.2010.07.020
- Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Anvar S, Mirjafari A. Microwave-promoted alkynylation-cyclization of 2-aminoaryl ketones: A green strategy for the synthesis of 2,4-disubstituted quinolines. Synlett. 2010;17(20):3104–12.
- Tomar M, Lucas NT, Gardiner MG, Müllen K, Jacob J. Facile synthesis and coupling of functionalized isomeric biquinolines. Tetrahedron Lett [Internet]. 2012;53(3):285–8. Available from: http://dx.doi.org/10.1016/j.tetlet.2011.11.008
- Qi C, Zheng Q, Hua R. A domino three-component condensation of ortho-haloacetophenones with urea or amines: a novel one-pot synthesis of halogen-substituted quinolines. Tetrahedron [Internet]. 2009;65(7):1316–20. Available from: http://dx.doi.org/10.1016/j.tet.2008.12.039
- Ghassamipour S, Sardarian AR. Friedländer synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions. Tetrahedron Lett [Internet]. 2009;50(5):514–9. Available from: http://dx.doi.org/10.1016/j.tetlet.2008.09.097
- Hegedüs A, Hell Z, Vargadi T, Potor A, Gresits I. A new, simple synthesis of 1,2-dihydroquinolines via cyclocondensation using zeolite catalyst. Catal Letters. 2007;117(3–4):99–101.
- Martı R, Ramo DJ, Yus M. Transition-Metal-Free Indirect Friedla ¨ nder Synthesis of Quinolines from Alcohols † The synthesis of polysubstituted quinolines can be easily and greenly accomplished by the direct reaction between the corresponding 2-aminobenzylic alcohol derivative an. Synthesis (Stuttg). 2008;(2):9778–80.
- Godino-Ojer M, Soriano E, Calvino-Casilda V, Maldonado-Hódar FJ, Pérez-Mayoral E. Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry. Chem Eng J [Internet]. 2017;314:488–97. Available from: http://dx.doi.org/10.1016/j.cej.2016.12.006
- Wang Y, Ai J, Wang Y, Chen Y, Wang L, Liu G, et al. Synthesis and c-met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: Identification of 3-(4-acetylpiperazin-1-yl)-5- (3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J Med Chem. 2011;54(7):2127–42.
- Sarma R, Prajapati D. Ionic liquid - An efficient recyclable system for the synthesis of 2,4-disubstituted quinolines via Meyer-Schuster rearrangement. Synlett. 2008;(19):3001–5.
- Lekhok KC, Prajapati D, Boruah RC. Indium(III) trifluoromethanesulfonate: An efficient reusable catalyst for the alkynylation-cyclization of 2-aminoaryl ketones and synthesis of 2,4-disubstituted quinolines. Synlett. 2008;(5):655–8.
- Wang Y, Peng C, Liu L, Zhao J, Su L, Zhu Q. Sulfuric acid promoted condensation cyclization of 2-(2-(trimethylsilyl) ethynyl)anilines with arylaldehydes in alcoholic solvents: an efficient one-pot synthesis of 4-alkoxy-2-arylquinolines. Tetrahedron Lett [Internet]. 2009;50(19):2261–5. Available from: http://dx.doi.org/10.1016/j.tetlet.2009.02.206
- Zhou W, Zhang L, Jiao N. The tandem reaction combining radical and ionic processes: an efficient approach to substituted 3,4-dihydroquinolin-2-ones. Tetrahedron [Internet]. 2009;65(10):1982–7. Available from: http://dx.doi.org/10.1016/j.tet.2009.01.027
- Kouznetsov V V. Recent synthetic developments in a powerful imino Diels-Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron [Internet]. 2009;65(14):2721–50. Available from: http://dx.doi.org/10.1016/j.tet.2008.12.059
- Wang LM, Hu L, Chen HJ, Sui YY, Shen W. One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J Fluor Chem. 2009;130(4):406–9.
- Gao GL, Niu YN, Yan ZY, Wang HL, Wang GW, Shaukat A, et al. Unexpected domino reaction via Pd-catalyzed Sonogashira coupling of benzimidoyl chlorides with 1,6-enynes and cyclization to synthesize quinoline derivatives. J Org Chem. 2010;75(4):1305–8.
- Huo Z, Gridnev ID, Yamamoto Y. A method for the synthesis of substituted quinolines via electrophilic cyclization of 1-azido-2-(2-propynyl)benzene. J Org Chem. 2010;75(4):1266–70.
- Raynes K, Foley M, Tilley L, Deady LW. Novel bisquinoline antimalarials: Synthesis, antimalarial activity, and inhibition of haem polymerisation. Biochem Pharmacol. 1996;52(4):551–9.
- Mohammadi K, Shirini F, Yahyazadeh A. 1,3-Disulfonic acid imidazolium hydrogen sulfate: A reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]quinoline derivatives. RSC Adv [Internet]. 2015;5(30):23586–90. Available from: http://dx.doi.org/10.1039/C5RA02198G
- Jia X, Peng F, Qing C, Huo C, Wang X. Catalytic Radical Cation Salt Induced C. 2012;(5):3–6.
- Selvakumar K, Lingam KAP, Varma RVL, Vijayabaskar V. Controlled and efficient synthesis of quinoline derivatives from Morita-Baylis-HILLMAN adducts by palladium-catalyzed heck reaction and cyclization. Synlett. 2015;26(5):646–50.
- Sharghi H, Aberi M, Khataminejad M, Shiri P. Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H. Beilstein J Org Chem. 2017;13(Scheme 1):1977–81.
- Chakraborty G, Sikari R, Das S, Mondal R, Sinha S, Banerjee S, et al. Dehydrogenative Synthesis of Quinolines, 2-Aminoquinolines, and Quinazolines Using Singlet Diradical Ni(II)-Catalysts. J Org Chem. 2019;84(5):2626–41.
- AlMarzouq DS, Elnagdi NMH. Glycerol and Q-tubes: Green catalyst and technique for synthesis of polyfunctionally substituted heteroaromatics and anilines. Molecules. 2019;24(9).
- Das K, Mondal A, Pal D, Srimani D. Sustainable Synthesis of Quinazoline and 2-Aminoquinoline via Dehydrogenative Coupling of 2-Aminobenzyl Alcohol and Nitrile Catalyzed by Phosphine-Free Manganese Pincer Complex. Org Lett. 2019;21(9):3223–7.
- Venkanna A, Swapna K, Rao PV. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3- dicarboxylates under ligand free conditions. RSC Adv. 2014;4(29):15154–60.
- Jin J, Guidi S, Abada Z, Amara Z, Selva M, George MW, et al. Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chem. 2017;19(10):2439–47.
- Vuong H, Stentzel MR, Klumpp DA. Superacid-promoted synthesis of quinoline derivatives. Tetrahedron Lett [Internet]. 2020;61(12):151630. Available from: https://doi.org/10.1016/j.tetlet.2020.151630
- Barteselli A, Parapini S, Basilico N, Mommo D, Sparatore A. Synthesis and evaluation of the antiplasmodial activity of novel indeno[2,1-c]quinoline derivatives. Bioorganic Med Chem [Internet]. 2014;22(21):5757–65. Available from: http://dx.doi.org/10.1016/j.bmc.2014.09.040
- Kondaparla S, Manhas A, Dola VR, Srivastava K, Puri SK, Katti SB. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg Chem [Internet]. 2018;80:204–11. Available from: https://doi.org/10.1016/j.bioorg.2018.06.012
- Mwande Maguene G, Lekana-Douki JB, Mouray E, Bousquet T, Grellier P, Pellegrini S, et al. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline derivatives. Eur J Med Chem. 2015;90:519–25.
- Kumar A, Srivastava K, Raja Kumar S, Puri SK, Chauhan PMS. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorganic Med Chem Lett [Internet]. 2010;20(23):7059–63. Available from: http://dx.doi.org/10.1016/j.bmcl.2010.09.107
- Singh B, Chetia D, Puri SK, Srivastava K, Prakash A. Synthesis and in vitro and in vivo antimalarial activity of novel 4-anilinoquinoline Mannich base derivatives. Med Chem Res. 2011;20(9):1523–9.
- Madapa S, Tusi Z, Mishra A, Srivastava K, Pandey SK, Tripathi R, et al. Search for new pharmacophores for antimalarial activity. Part II: Synthesis and antimalarial activity of new 6-ureido-4-anilinoquinazolines. Bioorganic Med Chem [Internet]. 2009;17(1):222–34. Available from: http://dx.doi.org/10.1016/j.bmc.2008.11.005
- Shiraki H, Kozar MP, Melendez V, Hudson TH, Ohrt C, Magill AJ, et al. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives. J Med Chem. 2011;54(1):131–42.
- Radini IAM, Elsheikh TMY, El-Telbani EM, Khidre RE. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules. 2016;21(7):10–21.
- Stringer T, De Kock C, Guzgay H, Okombo J, Liu J, Kanetake S, et al. Mono- and multimeric ferrocene congeners of quinoline-based polyamines as potential antiparasitics. Dalt Trans. 2016;45(34):13415–26.
- Van de Walle T, Boone M, Van Puyvelde J, Combrinck J, Smith PJ, Chibale K, et al. Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. Eur J Med Chem [Internet]. 2020;198:112330. Available from: https://doi.org/10.1016/j.ejmech.2020.112330
- . Murugan K, Panneerselvam C, Subramaniam J, Paulpandi M, Rajaganesh R, Vasanthakumaran M, et al. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci Rep [Internet]. 2022;12(1):1–11. Available from: https://doi.org/10.1038/s41598-022-08397-5
- Ma LY, Wang B, Pang LP, Zhang M, Wang SQ, Zheng YC, et al. Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorganic Med Chem Lett. 2015;25(5):1124–8.
- Karthikeyan C, Lee C, Moore J, Mittal R, Suswam EA, Abbott KL, et al. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells. Bioorganic Med Chem [Internet]. 2015;23(3):602–11. Available from: http://dx.doi.org/10.1016/j.bmc.2014.11.043
- Abbas SH, Abd El-Hafeez AA, Shoman ME, Montano MM, Hassan HA. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg Chem [Internet]. 2019;82(October 2018):360–77. Available from: https://doi.org/10.1016/j.bioorg.2018.10.064
- Moustafa AMY, Bakare SB. Synthesis of Some Hybrid 7-Hydroxy Quinolinone Derivatives As Anti Breast Cancer Drugs. Res Chem Intermed [Internet]. 2019;45(7):3895–912. Available from: https://doi.org/10.1007/s11164-019-03827-y
- Jafari F, Baghayi H, Lavaee P, Hadizadeh F, Soltani F, Moallemzadeh H, et al. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur J Med Chem [Internet]. 2019;164:292–303. Available from: https://doi.org/10.1016/j.ejmech.2018.12.060
- Malayeri SO, Abnous K, Arab A, Akaberi M, Mehri S, Zarghi A, et al. Design, synthesis and biological evaluation of 7-(aryl)-2,3-dihydro-[1,4]dioxino[2,3-g]quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorganic Med Chem [Internet]. 2017;25(3):1294–302. Available from: http://dx.doi.org/10.1016/j.bmc.2016.12.050
- Subashini G, Vidhya K, Arasakumar T, Angayarkanni J, Murugesh E, Saravanan A, et al. Quinoline-Based Imidazole Derivative as Heme Oxygenase-1 Inhibitor: A Strategy for Cancer Treatment. ChemistrySelect. 2018;3(13):3680–6.
- El-Sayed MAA, El-Husseiny WM, Abdel-Aziz NI, El-Azab AS, Abuelizz HA, Abdel-Aziz AAM. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: molecular docking study. J Enzyme Inhib Med Chem [Internet]. 2018;33(1):199–209. Available from: https://doi.org/10.1080/14756366.2017.1407926
- Sidoryk K, Switalska M, Jaromin A, Cmoch P, Bujak I, Kaczmarska M, et al. The synthesis of indolo[2,3-b]quinoline derivatives with a guanidine group: Highly selective cytotoxic agents. Eur J Med Chem. 2015;105:208–19.
- Ramírez H, Fernandez E, Rodrigues J, Mayora S, Martínez G, Celis C, et al. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch Pharm (Weinheim). 2021;354(7).
- Aboul-Enein MN, El-Azzouny AMAES, Ragab FAF, Hamissa MF. Design, Synthesis, and Cytotoxic Evaluation of Certain 7-Chloro-4-(piperazin-1-yl)quinoline Derivatives as VEGFR-II Inhibitors. Arch Pharm (Weinheim). 2017;350(3–4):1–12.
- Bassyouni FA, Abu-Baker SM, Mahmoud K, Moharam M, El-Nakkady SS, Abdel-Rehim M. Synthesis and biological evaluation of some new triazolo[1,5-a]quinoline derivatives as anticancer and antimicrobial agents. RSC Adv. 2014;4(46):24131–41.
- Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, et al. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med Chem Lett. 2013;4(2):170–4.
References
Ferlin MG, Chiarelotto G, Gasparotto V, Via LD, Pezzi V, Barzon L, et al. Synthesis and in Vitro and in Vivo Antitumor Activity of 2-Phenylpyrroloquinolin-4-ones. 2005;3417–27.
Gasparotto V, Castagliuolo I, Chiarelotto G, Pezzi V, Montanaro D, Brun P, et al. Synthesis and biological activity of 7-phenyl-6,9-dihydro-3H-pyrrolo[3,2-f] quinolin-9-ones: A new class of antimitotic agents devoid of aromatase activity. J Med Chem. 2006;49(6):1910–5.
Chen Y, Zhao Y, Lu C, Tzeng C, Wang J. Synthesis , cytotoxicity , and anti-inflammatory evaluation of 2- ( furan-2-yl ) -4- ( phenoxy ) quinoline derivatives . Part 4. 2006;14:4373–8.
Nasseri MA, Zakerinasab B, Kamayestani S. Proficient Procedure for Preparation of Quinoline Derivatives Catalyzed by NbCl 5 in Glycerol as Green Solvent . J Appl Chem. 2015;2015:1–7.
Horn J, Marsden SP, Nelson A, House D, Weingarten GG. Convergent , Regiospecific Synthesis of Quinolines from o -Aminophenylboronates. 2008;(6):10–3.
Prajapati D. Ionic Liquid – an Efficient Recyclable System for the Synthesis of 2 , 4-Disubstituted Quinolines via Meyer – Schuster Rearrangement. 2008;
Prajapati D, Boruah RC. Indium ( III ) Trifluoromethanesulfonate : An Efficient Reusable Catalyst for the Alkynylation – Cyclization of 2-Aminoaryl Ketones and Synthesis of 2 , 4-Disubstituted Quinolines. 2008;(5):655–8.
Zhao J, Peng C, Liu L, Wang Y, Zhu Q. Synthesis of 2-alkoxy(aroxy)-3-substituted Quinolines by DABCO-promoted cyclization of o-alkynylaryl isocyanides. J Org Chem. 2010;75(21):7502–4.
Mamaghani M, Tabatabaeian K, Araghi R, Fallah A, Hossein Nia R. An Efficient, Clean, and Catalyst-Free Synthesis of Fused Pyrimidines Using Sonochemistry. Org Chem Int. 2014;2014:1–9.
Kowsari E, Mallakmohammadi M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason Sonochem [Internet]. 2011;18(1):447–54. Available from: http://dx.doi.org/10.1016/j.ultsonch.2010.07.020
Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Anvar S, Mirjafari A. Microwave-promoted alkynylation-cyclization of 2-aminoaryl ketones: A green strategy for the synthesis of 2,4-disubstituted quinolines. Synlett. 2010;17(20):3104–12.
Tomar M, Lucas NT, Gardiner MG, Müllen K, Jacob J. Facile synthesis and coupling of functionalized isomeric biquinolines. Tetrahedron Lett [Internet]. 2012;53(3):285–8. Available from: http://dx.doi.org/10.1016/j.tetlet.2011.11.008
Qi C, Zheng Q, Hua R. A domino three-component condensation of ortho-haloacetophenones with urea or amines: a novel one-pot synthesis of halogen-substituted quinolines. Tetrahedron [Internet]. 2009;65(7):1316–20. Available from: http://dx.doi.org/10.1016/j.tet.2008.12.039
Ghassamipour S, Sardarian AR. Friedländer synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions. Tetrahedron Lett [Internet]. 2009;50(5):514–9. Available from: http://dx.doi.org/10.1016/j.tetlet.2008.09.097
Hegedüs A, Hell Z, Vargadi T, Potor A, Gresits I. A new, simple synthesis of 1,2-dihydroquinolines via cyclocondensation using zeolite catalyst. Catal Letters. 2007;117(3–4):99–101.
Martı R, Ramo DJ, Yus M. Transition-Metal-Free Indirect Friedla ¨ nder Synthesis of Quinolines from Alcohols † The synthesis of polysubstituted quinolines can be easily and greenly accomplished by the direct reaction between the corresponding 2-aminobenzylic alcohol derivative an. Synthesis (Stuttg). 2008;(2):9778–80.
Godino-Ojer M, Soriano E, Calvino-Casilda V, Maldonado-Hódar FJ, Pérez-Mayoral E. Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry. Chem Eng J [Internet]. 2017;314:488–97. Available from: http://dx.doi.org/10.1016/j.cej.2016.12.006
Wang Y, Ai J, Wang Y, Chen Y, Wang L, Liu G, et al. Synthesis and c-met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: Identification of 3-(4-acetylpiperazin-1-yl)-5- (3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J Med Chem. 2011;54(7):2127–42.
Sarma R, Prajapati D. Ionic liquid - An efficient recyclable system for the synthesis of 2,4-disubstituted quinolines via Meyer-Schuster rearrangement. Synlett. 2008;(19):3001–5.
Lekhok KC, Prajapati D, Boruah RC. Indium(III) trifluoromethanesulfonate: An efficient reusable catalyst for the alkynylation-cyclization of 2-aminoaryl ketones and synthesis of 2,4-disubstituted quinolines. Synlett. 2008;(5):655–8.
Wang Y, Peng C, Liu L, Zhao J, Su L, Zhu Q. Sulfuric acid promoted condensation cyclization of 2-(2-(trimethylsilyl) ethynyl)anilines with arylaldehydes in alcoholic solvents: an efficient one-pot synthesis of 4-alkoxy-2-arylquinolines. Tetrahedron Lett [Internet]. 2009;50(19):2261–5. Available from: http://dx.doi.org/10.1016/j.tetlet.2009.02.206
Zhou W, Zhang L, Jiao N. The tandem reaction combining radical and ionic processes: an efficient approach to substituted 3,4-dihydroquinolin-2-ones. Tetrahedron [Internet]. 2009;65(10):1982–7. Available from: http://dx.doi.org/10.1016/j.tet.2009.01.027
Kouznetsov V V. Recent synthetic developments in a powerful imino Diels-Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron [Internet]. 2009;65(14):2721–50. Available from: http://dx.doi.org/10.1016/j.tet.2008.12.059
Wang LM, Hu L, Chen HJ, Sui YY, Shen W. One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J Fluor Chem. 2009;130(4):406–9.
Gao GL, Niu YN, Yan ZY, Wang HL, Wang GW, Shaukat A, et al. Unexpected domino reaction via Pd-catalyzed Sonogashira coupling of benzimidoyl chlorides with 1,6-enynes and cyclization to synthesize quinoline derivatives. J Org Chem. 2010;75(4):1305–8.
Huo Z, Gridnev ID, Yamamoto Y. A method for the synthesis of substituted quinolines via electrophilic cyclization of 1-azido-2-(2-propynyl)benzene. J Org Chem. 2010;75(4):1266–70.
Raynes K, Foley M, Tilley L, Deady LW. Novel bisquinoline antimalarials: Synthesis, antimalarial activity, and inhibition of haem polymerisation. Biochem Pharmacol. 1996;52(4):551–9.
Mohammadi K, Shirini F, Yahyazadeh A. 1,3-Disulfonic acid imidazolium hydrogen sulfate: A reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]quinoline derivatives. RSC Adv [Internet]. 2015;5(30):23586–90. Available from: http://dx.doi.org/10.1039/C5RA02198G
Jia X, Peng F, Qing C, Huo C, Wang X. Catalytic Radical Cation Salt Induced C. 2012;(5):3–6.
Selvakumar K, Lingam KAP, Varma RVL, Vijayabaskar V. Controlled and efficient synthesis of quinoline derivatives from Morita-Baylis-HILLMAN adducts by palladium-catalyzed heck reaction and cyclization. Synlett. 2015;26(5):646–50.
Sharghi H, Aberi M, Khataminejad M, Shiri P. Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H. Beilstein J Org Chem. 2017;13(Scheme 1):1977–81.
Chakraborty G, Sikari R, Das S, Mondal R, Sinha S, Banerjee S, et al. Dehydrogenative Synthesis of Quinolines, 2-Aminoquinolines, and Quinazolines Using Singlet Diradical Ni(II)-Catalysts. J Org Chem. 2019;84(5):2626–41.
AlMarzouq DS, Elnagdi NMH. Glycerol and Q-tubes: Green catalyst and technique for synthesis of polyfunctionally substituted heteroaromatics and anilines. Molecules. 2019;24(9).
Das K, Mondal A, Pal D, Srimani D. Sustainable Synthesis of Quinazoline and 2-Aminoquinoline via Dehydrogenative Coupling of 2-Aminobenzyl Alcohol and Nitrile Catalyzed by Phosphine-Free Manganese Pincer Complex. Org Lett. 2019;21(9):3223–7.
Venkanna A, Swapna K, Rao PV. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3- dicarboxylates under ligand free conditions. RSC Adv. 2014;4(29):15154–60.
Jin J, Guidi S, Abada Z, Amara Z, Selva M, George MW, et al. Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chem. 2017;19(10):2439–47.
Vuong H, Stentzel MR, Klumpp DA. Superacid-promoted synthesis of quinoline derivatives. Tetrahedron Lett [Internet]. 2020;61(12):151630. Available from: https://doi.org/10.1016/j.tetlet.2020.151630
Barteselli A, Parapini S, Basilico N, Mommo D, Sparatore A. Synthesis and evaluation of the antiplasmodial activity of novel indeno[2,1-c]quinoline derivatives. Bioorganic Med Chem [Internet]. 2014;22(21):5757–65. Available from: http://dx.doi.org/10.1016/j.bmc.2014.09.040
Kondaparla S, Manhas A, Dola VR, Srivastava K, Puri SK, Katti SB. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg Chem [Internet]. 2018;80:204–11. Available from: https://doi.org/10.1016/j.bioorg.2018.06.012
Mwande Maguene G, Lekana-Douki JB, Mouray E, Bousquet T, Grellier P, Pellegrini S, et al. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline derivatives. Eur J Med Chem. 2015;90:519–25.
Kumar A, Srivastava K, Raja Kumar S, Puri SK, Chauhan PMS. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorganic Med Chem Lett [Internet]. 2010;20(23):7059–63. Available from: http://dx.doi.org/10.1016/j.bmcl.2010.09.107
Singh B, Chetia D, Puri SK, Srivastava K, Prakash A. Synthesis and in vitro and in vivo antimalarial activity of novel 4-anilinoquinoline Mannich base derivatives. Med Chem Res. 2011;20(9):1523–9.
Madapa S, Tusi Z, Mishra A, Srivastava K, Pandey SK, Tripathi R, et al. Search for new pharmacophores for antimalarial activity. Part II: Synthesis and antimalarial activity of new 6-ureido-4-anilinoquinazolines. Bioorganic Med Chem [Internet]. 2009;17(1):222–34. Available from: http://dx.doi.org/10.1016/j.bmc.2008.11.005
Shiraki H, Kozar MP, Melendez V, Hudson TH, Ohrt C, Magill AJ, et al. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives. J Med Chem. 2011;54(1):131–42.
Radini IAM, Elsheikh TMY, El-Telbani EM, Khidre RE. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules. 2016;21(7):10–21.
Stringer T, De Kock C, Guzgay H, Okombo J, Liu J, Kanetake S, et al. Mono- and multimeric ferrocene congeners of quinoline-based polyamines as potential antiparasitics. Dalt Trans. 2016;45(34):13415–26.
Van de Walle T, Boone M, Van Puyvelde J, Combrinck J, Smith PJ, Chibale K, et al. Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. Eur J Med Chem [Internet]. 2020;198:112330. Available from: https://doi.org/10.1016/j.ejmech.2020.112330
. Murugan K, Panneerselvam C, Subramaniam J, Paulpandi M, Rajaganesh R, Vasanthakumaran M, et al. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci Rep [Internet]. 2022;12(1):1–11. Available from: https://doi.org/10.1038/s41598-022-08397-5
Ma LY, Wang B, Pang LP, Zhang M, Wang SQ, Zheng YC, et al. Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorganic Med Chem Lett. 2015;25(5):1124–8.
Karthikeyan C, Lee C, Moore J, Mittal R, Suswam EA, Abbott KL, et al. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells. Bioorganic Med Chem [Internet]. 2015;23(3):602–11. Available from: http://dx.doi.org/10.1016/j.bmc.2014.11.043
Abbas SH, Abd El-Hafeez AA, Shoman ME, Montano MM, Hassan HA. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg Chem [Internet]. 2019;82(October 2018):360–77. Available from: https://doi.org/10.1016/j.bioorg.2018.10.064
Moustafa AMY, Bakare SB. Synthesis of Some Hybrid 7-Hydroxy Quinolinone Derivatives As Anti Breast Cancer Drugs. Res Chem Intermed [Internet]. 2019;45(7):3895–912. Available from: https://doi.org/10.1007/s11164-019-03827-y
Jafari F, Baghayi H, Lavaee P, Hadizadeh F, Soltani F, Moallemzadeh H, et al. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur J Med Chem [Internet]. 2019;164:292–303. Available from: https://doi.org/10.1016/j.ejmech.2018.12.060
Malayeri SO, Abnous K, Arab A, Akaberi M, Mehri S, Zarghi A, et al. Design, synthesis and biological evaluation of 7-(aryl)-2,3-dihydro-[1,4]dioxino[2,3-g]quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorganic Med Chem [Internet]. 2017;25(3):1294–302. Available from: http://dx.doi.org/10.1016/j.bmc.2016.12.050
Subashini G, Vidhya K, Arasakumar T, Angayarkanni J, Murugesh E, Saravanan A, et al. Quinoline-Based Imidazole Derivative as Heme Oxygenase-1 Inhibitor: A Strategy for Cancer Treatment. ChemistrySelect. 2018;3(13):3680–6.
El-Sayed MAA, El-Husseiny WM, Abdel-Aziz NI, El-Azab AS, Abuelizz HA, Abdel-Aziz AAM. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: molecular docking study. J Enzyme Inhib Med Chem [Internet]. 2018;33(1):199–209. Available from: https://doi.org/10.1080/14756366.2017.1407926
Sidoryk K, Switalska M, Jaromin A, Cmoch P, Bujak I, Kaczmarska M, et al. The synthesis of indolo[2,3-b]quinoline derivatives with a guanidine group: Highly selective cytotoxic agents. Eur J Med Chem. 2015;105:208–19.
Ramírez H, Fernandez E, Rodrigues J, Mayora S, Martínez G, Celis C, et al. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch Pharm (Weinheim). 2021;354(7).
Aboul-Enein MN, El-Azzouny AMAES, Ragab FAF, Hamissa MF. Design, Synthesis, and Cytotoxic Evaluation of Certain 7-Chloro-4-(piperazin-1-yl)quinoline Derivatives as VEGFR-II Inhibitors. Arch Pharm (Weinheim). 2017;350(3–4):1–12.
Bassyouni FA, Abu-Baker SM, Mahmoud K, Moharam M, El-Nakkady SS, Abdel-Rehim M. Synthesis and biological evaluation of some new triazolo[1,5-a]quinoline derivatives as anticancer and antimicrobial agents. RSC Adv. 2014;4(46):24131–41.
Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, et al. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med Chem Lett. 2013;4(2):170–4.