Main Article Content

Abstract

Ruminants possess a complex ruminal microbial population that enables them to digest plant-based feed through microbial fermentation. Diets rich in legumes can lead to the deposition of saturated fatty acids and may cause rumen acidosis. However, certain factors can mitigate the acidic effects of such diets in the rumen, positively altering the composition of fatty acids. This is one of the significant findings highlighted in this study, along with the breakdown of nutrients into fatty acids and microbial proteins. To explore these dynamics, relevant published articles were reviewed. The mutual dependence between various microorganisms in the rumen fermentation process directly impacts the growth and quality of animal products, making it a crucial area of focus for the food industry.

Keywords

Animal Products Micro Biome Metabolism Rumen Fermentation Rumen Micro Biota Yeast

Article Details

How to Cite
Ahmadzai, N. (2024). Factors Affecting Rumen Fermentation and Its Effects on Growth and Product Quality in Ruminants. Journal of Natural Sciences – Kabul University, 7(3), 127–141. https://doi.org/10.62810/jns.v7i3.318

References

  1. Abadi, E. I. K., Heydari, S., & Kazemi, M. (2024). Dietary incorporation of magnetic bentonite nanocomposite: impacts on in vitro fermentation pattern, nutrient digestibility, and growth performance of Baluchi male lambs. Iranian Journal of Veterinary Research, 25(1), 16. DOI: 10.22099/IJVR.2024.47753.6919
  2. Accetto, T., & Avguštin, G. (2019). The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity?. Systematic and applied microbiology, 42(2), 107-116. DOI: 10.1016/j.syapm.2018.10.001
  3. Allen, H. K., Levine, U. Y., Looft, T., Bandrick, M., & Casey, T. A. (2013). Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in microbiology, 21(3), 114-119. DOI: 10.1016/j.tim.2012.11.001
  4. Aluwong, T., Kobo, P. I., & Abdullahi, A. (2010). Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: a review. African Journal of Biotechnology, 9(38), 6229-6232.
  5. Aschenbach, J. R., Penner, G. B., Stumpff, F., & Gäbel, G. (2011). Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. Journal of animal science, 89(4), 1092-1107. https://doi.org/10.2527/jas.2010-3301
  6. Bhatia, I. S. (1974). The study of factors affecting the utilization of low-grade roughages and production of volatile fatty acids in the rumen of Indian cattle. https://community.nzdl.org/custom/gsdl-instrep/cgi-bin/linux/library.cgi?e=d-01000-00---off-0demo--00&a=d&c=demo&cl=CL4&d=b21wae.8
  7. Bodas R, N Prieto, R Garcia-González, S Andrés, FJ Giráldez, S López Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Tech. 2012. 176, 78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010
  8. Brown, M. S., Ponce, C. H., & Pulikanti, R. (2006). Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. Journal of Animal Science, 84(suppl_13), E25-E33. DOI: 10.2527/2006.8413_supple25
  9. Burns JC. ASAS Centennial Paper: utilization of pasture and forages by ruminants: a historical perspective. J Anim Sci 86, 2008 3647-3663. https://doi.org/10.2527/jas.2008-1240
  10. Callaway, E. S., & Martin, S. A. (1997). Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of dairy science, 80(9), 2035-2044.
  11. https://doi.org/10.3168/jds.S0022-0302(97)76148-4
  12. Chaudhary, L. C., Srivastava, A., & Singh, K. K. (1995). Rumen fermentation pattern and digestion of structural carbohydrates in buffalo (Bubalus bubalis) calves as affected by ciliate protozoa. Animal Feed Science and Technology, 56(1-2), 111-117. https://doi.org/10.1016/0377-8401(95)00810-A
  13. Chiba, L. I. (2014). Rumen microbiology and fermentation. Animal Nutrition Handbook, 57-79. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=13.%09Chiba%2C+L.+I.+%282014%29.+Rumen+microbiology+and+fermentation.+Animal+Nutrition+Handbook%2C+57-79.&btnG=
  14. Cole, N. A., McLaren, J. B., & Hutcheson, D. P. (1982). Influence of preweaning and B-vitamin supplementation of the feedlot receiving diet on calves subjected to marketing and transit stress. Journal of Animal Science, 54(5), 911-917. https://doi.org/10.2527/jas1982.545911x
  15. Ding, W. Q., & Lind, S. E. (2009). Metal ionophores–an emerging class of anticancer drugs. IUBMB life, 61(11), 1013-1018. https://doi.org/10.1002/iub.253.
  16. Ellis, J. L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N. E., McBride, B. W., & France, J. (2008). Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. The Journal of Agricultural Science, 146(2), 213-233. DOI: https://doi.org/10.1017/S0021859608007752
  17. Ellis, J. L., Dijkstra, J., Bannink, A., Kebreab, E., Hook, S. E., Archibeque, S., & France, J. (2012). Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. Journal of Animal Science, 90(8), 2717-2726. https://doi.org/10.2527/jas.2011-3966
  18. Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., & Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific reports, 5(1), 14567. https://www.nature.com/articles/srep14567
  19. Hegarty, R. S., & Gerdes, R. (1999). Hydrogen production and transfer in the rumen. Recent Advances in Animal Nutrition in Australia, 12, 37-44. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b2a4682ea63dc4b786349d1c6cf542704a1769f9
  20. Hungate, R. E. (2013). The rumen and its microbes. Elsevier. https://books.google.com/books?hl=en&lr=&id=TK_SBAAAQBAJ&oi=fnd&pg=PP1&dq=20.%09Hungate,+R.+E.+(2013).+The+rumen+and+its+microbes.+Elsevier.&ots=9GNMpIeTDk&sig=vLSB5sVSLgMaHuPXu4e8rxGzAKM
  21. Gressley, T. F., Hall, M. B., & Armentano, L. E. (2011). Ruminant nutrition symposium: productivity, digestion, and health responses to hindgut acidosis in ruminants. Journal of animal science, 89(4), 1120-1130. https://doi.org/10.2527/jas.2010-3460
  22. Hughes, J., Kwong, W. Y., Li, D., Salter, A. M., Lea, R. G., & Sinclair, K. D. (2011). Effects of omega-3 and-6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction, 141(1), 105-118. DOI: 10.1530/REP-10-0337
  23. Kingston-Smith, A. H., Marshall, A. H., & Moorby, J. M. (2013). Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint. Animal, 7(s1), 79-88. DOI: https://doi.org/10.1017/S1751731112000961
  24. McAllister, T. A., Rode, L. M., Major, D. J., Cheng, K. J., & Buchanan-Smith, J. G. (1990). Effect of ruminal microbial colonization on cereal grain digestion. Canadian Journal of Animal Science, 70(2), 571-579.
  25. Can. J. Anim. Sci. Downloaded from cdnsciencepub.com by 203.215.32.16 on 12/04/24
  26. Santra, A., Chaturvedi, O. H., Tripathi, M. K., Kumar, R., & Karim, S. A. (2003). Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Ruminant Research, 47(3), 203-212. https://doi.org/10.1016/S0921-4488(02)00241-9
  27. Park, B. K., Choi, N. J., Kim, H. C., Kim, T. I., Cho, Y. M., Oh, Y. K., ... & Kwon, E. G. (2010). Effects of amino acid-enriched ruminally protected fatty acids on plasma metabolites, growth performance and carcass characteristics of Hanwoo steers. Asian-Australasian journal of animal sciences, 23(8), 1013-1021. https://doi.org/10.5713/ajas.2010.90559
  28. Pitta, D. W., Pinchak, W. E., Dowd, S. E., Osterstock, J., Gontcharova, V., Youn, E., ... & Malinowski, D. P. (2010). Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microbial ecology, 59, 511-522. DOI: 10.1007/s00248-009-9609-6
  29. Riddell, D. O., Bartley, E. E., & Dayton, A. D. (1980). Effect of nicotinic acid on rumen fermentation in vitro and in vivo. Journal of Dairy Science, 63(9), 1429-1436. https://doi.org/10.3168/jds.S0022-0302(80)83100-6
  30. Russell, J. B., & Rychlik, J. L. (2001). Factors that alter rumen microbial ecology. Science, 292(5519), 1119-1122. DOI: 10.1126/science.1058830
  31. Russell, J. B., & Mantovani, H. C. (2002). The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. Journal of molecular microbiology and biotechnology, 4(4), 347-355. PMID: 12125815
  32. Bakker, E. P. (1979). Ionophore antibiotics. In Mechanism of action of antibacterial agents (pp. 67-97). Berlin, Heidelberg: Springer Berlin Heidelberg. log in via an institution
  33. Ungerfeld, E. M. (2020). Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Frontiers in Microbiology, 11, 589. https://doi.org/10.3389/fmicb.2020.00589
  34. Weiss, W. P. (2017). A 100-Year Review: From ascorbic acid to zinc Mineral and vitamin nutrition of dairy cows. Journal of dairyscience, 100(12), 10045-10060. https://doi.org/10.3168/jds.2017-12935
  35. WenZhu Yang (2017). Factors Affecting Rumen Fermentation Using Batch Culture. Technique/Agriculture and Agri-Food Canada, Chapter 5, 77-92 http://dx.doi.org/10.5772/64207.