Main Article Content
Abstract
Derivatives of 1,4-cyclohexadiene are widely used in industrial chemistry and the synthesis of organic materials. However, extracting these essential cyclic hydrocarbons is often complex and challenging. An efficient alternative involves the reduction of benzene and other aromatic compounds via the Birch reduction method. This process employs sodium or lithium as reducing agents in liquid ammonia, with an alcohol such as methanol, ethanol, or butanol, to convert aromatic compounds into 1,4-cyclohexadiene. Over time, various modifications to the Birch reduction, including ammonia-free, metal-free photochemical, solvent-free, and electrode-mediated approaches, have been developed. This review compares these techniques regarding chemo-selectivity, regioselectivity, reaction conditions, efficiency, and environmentally sustainable practices.
Keywords
Article Details
Copyright (c) 2024 Copyright Reserved for Kabul University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ahmad, J., Bazaka, K., Oelgemöller, M., & Jacob, M. V. (2014). Wetting, solubility and chemical characteristics of plasma-polymerized 1-isopropyl-4-methyl-1, 4-cyclohexadiene thin films. Coatings, 4(3), 527–552. https://doi.org/10.3390/coatings4030527
- Akhrem, A. A. (2012). Birch reduction of aromatic compounds.
- Ali, S. A. (2007). Thermodynamic aspects of aromatic hydrogenation. Petroleum Science and Technology, 25(10), 1293–1304. https://doi.org/10.1080/10916460500528607
- Asako, S., Takahashi, I., Kurogi, T., Murakami, Y., Ilies, L., & Takai, K. (2022). Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. Chemistry Letters, 51(1), 38–40. https://doi.org/10.1246/cl.210546
- Baschieri, A., Amorati, R., Valgimigli, L., & Sambri, L. (2019). 1-Methyl-1, 4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. The Journal of Organic Chemistry, 84(21), 13655–13664. https://doi.org/10.1021/acs.joc.9b01898
- Benkeser, R. A., & Belmonte, F. G. (1984). Reduction of alkynes by a new reducing system. The Journal of Organic Chemistry, 49(9), 1662–1664. https://doi.org/10.1021/jo00183a038
- Birch, A. J. (1944). 117. Reduction by dissolving metals. Part I. Journal of the Chemical Society (Resumed), 430–436. https://doi.org/10.1039/JR9440000430
- Birch, A. J. (1996). The Birch reduction in organic synthesis. Pure and Applied Chemistry, 68(3), 553–556. https://doi.org/10.1351/pac199668030553
- Boll, M., Fuchs, G., & Heider, J. (2002). Anaerobic oxidation of aromatic compounds and hydrocarbons. Current Opinion in Chemical Biology, 6(5), 604–611. https://doi.org/10.1016/S1367-5931(02)00375-7
- Burrows, J., Kamo, S., & Koide, K. (2021). Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science, 374(6568), 741–746. https://doi.org/10.1126/science.abk30
- Cao, H., Zhu, B., Yang, Y., Xu, L., Yu, L., & Xu, Q. (2018). Recent advances on controllable and selective catalytic oxidation of cyclohexene. Chinese Journal of Catalysis, 39(5), 899–907. https://doi.org/10.1016/S1872-2067(18)63050-5
- Che, M. (2013). Nobel Prize in chemistry 1 912 to Sabatier: Organic chemistry or catalysis? Catalysis Today, 218, 162–171. https://doi.org/10.1016/j.cattod.2013.07.006
- Chen, Z., Sun, H., Peng, Z., Gao, J., Li, B., Liu, Z., & Liu, S. (2019). Selective hydrogenation of benzene: progress of understanding for the Ru-based catalytic system design. Industrial & Engineering Chemistry Research, 58(31), 13794–13803. https://doi.org/10.1021/acs.iecr.9b01475
- Cole, J. P., Chen, D.-F., Kudisch, M., Pearson, R. M., Lim, C.-H., & Miyake, G. M. (2020). Organocatalyzed Birch reduction driven by visible light. Journal of the American Chemical Society, 142(31), 13573–13581. https://doi.org/10.1021/jacs.0c05899
- Costanzo, M. J., Patel, M. N., Petersen, K. A., & Vogt, P. F. (2009). Ammonia-free Birch reductions with sodium stabilized in silica gel, Na–SG (I). Tetrahedron Letters, 50(39), 5463–5466. https://doi.org/10.1016/j.tetlet.2009.07.040
- Davison, N., Quirk, J. A., Tuna, F., Collison, D., McMullin, C. L., Michaels, H., Morritt, G. H., Waddell, P. G., Gould, J. A., & Freitag, M. (2023). A room-temperature-stable electride and its reactivity: Reductive benzene/pyridine couplings and solvent-free Birch reductions. Chem, 9(3), 576–591. 10.1016/j.chempr.2022.11.006
- de la Cruz-Martínez, F., de Sarasa Buchaca, M. M., Castro-Osma, J. A., & Lara-Sánchez, A. (2023). Catalytic synthesis of biosourced polyesters from epoxides and cyclic anhydrides. In Biopolymers (pp. 347–383). Elsevier. https://doi.org/10.1016/B978-0-323-90939-6.00006-6
- De, P. B., Asako, S., & Ilies, L. (2021). Recent advances in the use of sodium dispersion for organic synthesis. Synthesis, 53(18), 3180–3192. https://doi.org/10.1055/a-1478-7061
- Diallo, A. K., Kirillov, E., Slawinski, M., Brusson, J.-M., Guillaume, S. M., & Carpentier, J.-F. (2015). Syndioselective ring-opening polymerization and copolymerization of trans-1, 4-cyclohexadiene carbonate mediated by achiral metal-and organo-catalysts. Polymer Chemistry, 6(11), 1961–1971. https://doi.org/10.1039/C4PY01713G
- Franck, H.-G., & Stadelhofer, J. W. (2012). Industrial aromatic chemistry: raw materials· processes· products. Springer Science & Business Media.
- Gao, Y., Kubota, K., & Ito, H. (2023). Mechanochemical Approach for Air‐Tolerant and Extremely Fast Lithium‐Based Birch Reductions in Minutes. Angewandte Chemie, 135(21), e202217723. https://doi.org/10.1002/ange.202217723
- Ghosh, S., Acharyya, S. S., Adak, S., Konathala, L. N. S., Sasaki, T., & Bal, R. (2014). Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chemistry, 16(5), 2826–2834. https://doi.org/10.1039/C4GC00130C
- Henríquez, A., Melin, V., Moreno, N., Mansilla, H. D., & Contreras, D. (2019). Optimization of cyclohexanol and cyclohexanone yield in the photocatalytic oxofunctionalization of cyclohexane over Degussa P-25 under visible light. Molecules, 24(12), 2244. https://doi.org/10.3390/molecules24122244
- Hong, Y., Sun, D., & Fang, Y. (2018). The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO 4 berlinite by oxygen under atmospheric pressure. Chemistry Central Journal, 12, 1–9. https://doi.org/10.1186/s13065-018-0405-6
- Hook, J. M., & Mander, L. N. (1986). Recent developments in the Birch reduction of aromatic compounds: applications to the synthesis of natural products. Natural Product Reports, 3, 35–85. https://doi.org/10.1039/NP9860300035
- Hosseini Nejad, E., van Melis, C. G. W., Vermeer, T. J., Koning, C. E., & Duchateau, R. (2012). Alternating ring-opening polymerization of cyclohexene oxide and anhydrides: Effect of catalyst, cocatalyst, and anhydride structure. Macromolecules, 45(4), 1770–1776. https://doi.org/10.1021/ma2025804
- Hronec, M., Cvengrošová, Z., Králik, M., Palma, G., & Corain, B. (1996). Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts. Journal of Molecular Catalysis A: Chemical, 105(1–2), 25–30. https://doi.org/10.1016/1381-1169(95)00184-0
- Ishifune, M., Yamashita, H., Kera, Y., Yamashita, N., Hirata, K., Murase, H., & Kashimura, S. (2003). Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors. Electrochimica Acta, 48(17), 2405–2409. https://doi.org/10.1016/S0013-4686(03)00259-7
- Jin, H., Yuan, W., Li, W., Yang, J., Zhou, Z., Zhao, L., Li, Y., & Qi, F. (2023). Combustion chemistry of aromatic hydrocarbons. Progress in Energy and Combustion Science, 96, 101076. https://doi.org/10.1016/j.pecs.2023.101076
- Jorschick, H., Preuster, P., Bösmann, A., & Wasserscheid, P. (2021). Hydrogenation of aromatic and heteroaromatic compounds–a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems. Sustainable Energy & Fuels, 5(5), 1311–1346. https://doi.org/10.1039/D0SE01369B
- Kerzig, C., Guo, X., & Wenger, O. S. (2019). Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. Journal of the American Chemical Society, 141(5), 2122–2127. https://doi.org/10.1021/jacs.8b12223
- Kiritsakis, A. K. (1998). Flavor components of olive oil—A review. Journal of the American Oil Chemists’ Society, 75(6), 673–681. https://doi.org/10.1007/s11746-998-0205-6
- Kluson, P., & Cerveny, L. (1995). Selective hydrogenation over ruthenium catalysts. Applied Catalysis A: General, 128(1), 13–31. https://doi.org/10.1016/0926-860X(95)00046-1
- Kondo, K., Kubota, K., & Ito, H. (2024). Mechanochemistry enabling highly efficient Birch reduction using sodium lumps and D-(+)-glucose. Chemical Science, 15(12), 4452–4457. https://doi.org/10.1039/d3sc06052g
- Lei, P., Ding, Y., Zhang, X., Adijiang, A., Li, H., Ling, Y., & An, J. (2018). A practical and chemoselective ammonia-free Birch reduction. Organic Letters, 20(12), 3439–3442. https://doi.org/10.1021/acs.orglett.8b00891
- Mortier, J. (2015). Arene chemistry: reaction mechanisms and methods for aromatic compounds. John Wiley & Sons.
- Na, N., Xia, Y., Zhu, Z., Zhang, X., & Cooks, R. G. (2009). Birch reduction of benzene in a low‐temperature plasma. Angewandte Chemie, 121(11), 2051–2053. https://doi.org/10.1002/ange.200805256
- Nemirovich, T., Young, B., Brezina, K., Mason, P. E., Seidel, R., Stemer, D., Winter, B., Jungwirth, P., Bradforth, S. E., & Schewe, H. C. (2024). Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction. Journal of the American Chemical Society, 146(12), 8043–8057. https://doi.org/10.1021/jacs.3c11655
- O’Connor, R. P., & Schmidt, L. D. (2001). Oxygenates and olefins from catalytic partial oxidation of cyclohexane and n-hexane in single-gauze chemical reactors. In Studies in Surface Science and Catalysis (Vol. 133, pp. 289–296). Elsevier. https://doi.org/10.1016/S0167-2991(01)81974-1
- Rabideau, P. W. (1989). The metal-ammonia reduction of aromatic compounds. Tetrahedron, 45(6), 1579–1603. https://doi.org/10.1016/S0040-4020(01)80022-3
- Shi, R., Wang, Z., Zhao, Y., Waterhouse, G. I. N., Li, Z., Zhang, B., Sun, Z., Xia, C., Wang, H., & Zhang, T. (2021). Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 4(7), 565–574. https://doi.org/10.1038/s41929-021-00640-y
- Shiraishi, Y., Sugano, Y., Ichikawa, S., & Hirai, T. (2012). Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catalysis Science & Technology, 2(2), 400–405. https://doi.org/10.1039/C1CY00331C
- Tobal, I. E., Bautista, R., Diez, D., Garrido, N. M., & García-García, P. (2021). 1, 3-cyclohexadien-1-als: Synthesis, reactivity and bioactivities. Molecules, 26(6), 1772. https://doi.org/10.3390/molecules26061772
- Winkler, M., Romain, C., Meier, M. A. R., & Williams, C. K. (2015). Renewable polycarbonates and polyesters from 1, 4-cyclohexadiene. Green Chemistry, 17(1), 300–306. https://doi.org/10.1039/C4GC01353K
- Yamashita, Y., Hamaguchi, K., Machida, S., Mukai, K., Yoshinobu, J., Tanaka, S., & Kamada, M. (2001). Adsorbed states of cyclopentene, cyclohexene, and 1, 4-cyclohexadiene on Si (1 0 0)(2× 1): towards the fabrication of novel organic films/Si hybrid structures. Applied Surface Science, 169, 172–175. https://doi.org/10.1016/S0169-4332(00)00725-X
- Zimmerman, H. E. (2012). A mechanistic analysis of the Birch reduction. Accounts of Chemical Research, 45(2), 164–170. https://doi.org/10.1021/ar2000698
References
Ahmad, J., Bazaka, K., Oelgemöller, M., & Jacob, M. V. (2014). Wetting, solubility and chemical characteristics of plasma-polymerized 1-isopropyl-4-methyl-1, 4-cyclohexadiene thin films. Coatings, 4(3), 527–552. https://doi.org/10.3390/coatings4030527
Akhrem, A. A. (2012). Birch reduction of aromatic compounds.
Ali, S. A. (2007). Thermodynamic aspects of aromatic hydrogenation. Petroleum Science and Technology, 25(10), 1293–1304. https://doi.org/10.1080/10916460500528607
Asako, S., Takahashi, I., Kurogi, T., Murakami, Y., Ilies, L., & Takai, K. (2022). Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. Chemistry Letters, 51(1), 38–40. https://doi.org/10.1246/cl.210546
Baschieri, A., Amorati, R., Valgimigli, L., & Sambri, L. (2019). 1-Methyl-1, 4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. The Journal of Organic Chemistry, 84(21), 13655–13664. https://doi.org/10.1021/acs.joc.9b01898
Benkeser, R. A., & Belmonte, F. G. (1984). Reduction of alkynes by a new reducing system. The Journal of Organic Chemistry, 49(9), 1662–1664. https://doi.org/10.1021/jo00183a038
Birch, A. J. (1944). 117. Reduction by dissolving metals. Part I. Journal of the Chemical Society (Resumed), 430–436. https://doi.org/10.1039/JR9440000430
Birch, A. J. (1996). The Birch reduction in organic synthesis. Pure and Applied Chemistry, 68(3), 553–556. https://doi.org/10.1351/pac199668030553
Boll, M., Fuchs, G., & Heider, J. (2002). Anaerobic oxidation of aromatic compounds and hydrocarbons. Current Opinion in Chemical Biology, 6(5), 604–611. https://doi.org/10.1016/S1367-5931(02)00375-7
Burrows, J., Kamo, S., & Koide, K. (2021). Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science, 374(6568), 741–746. https://doi.org/10.1126/science.abk30
Cao, H., Zhu, B., Yang, Y., Xu, L., Yu, L., & Xu, Q. (2018). Recent advances on controllable and selective catalytic oxidation of cyclohexene. Chinese Journal of Catalysis, 39(5), 899–907. https://doi.org/10.1016/S1872-2067(18)63050-5
Che, M. (2013). Nobel Prize in chemistry 1 912 to Sabatier: Organic chemistry or catalysis? Catalysis Today, 218, 162–171. https://doi.org/10.1016/j.cattod.2013.07.006
Chen, Z., Sun, H., Peng, Z., Gao, J., Li, B., Liu, Z., & Liu, S. (2019). Selective hydrogenation of benzene: progress of understanding for the Ru-based catalytic system design. Industrial & Engineering Chemistry Research, 58(31), 13794–13803. https://doi.org/10.1021/acs.iecr.9b01475
Cole, J. P., Chen, D.-F., Kudisch, M., Pearson, R. M., Lim, C.-H., & Miyake, G. M. (2020). Organocatalyzed Birch reduction driven by visible light. Journal of the American Chemical Society, 142(31), 13573–13581. https://doi.org/10.1021/jacs.0c05899
Costanzo, M. J., Patel, M. N., Petersen, K. A., & Vogt, P. F. (2009). Ammonia-free Birch reductions with sodium stabilized in silica gel, Na–SG (I). Tetrahedron Letters, 50(39), 5463–5466. https://doi.org/10.1016/j.tetlet.2009.07.040
Davison, N., Quirk, J. A., Tuna, F., Collison, D., McMullin, C. L., Michaels, H., Morritt, G. H., Waddell, P. G., Gould, J. A., & Freitag, M. (2023). A room-temperature-stable electride and its reactivity: Reductive benzene/pyridine couplings and solvent-free Birch reductions. Chem, 9(3), 576–591. 10.1016/j.chempr.2022.11.006
de la Cruz-Martínez, F., de Sarasa Buchaca, M. M., Castro-Osma, J. A., & Lara-Sánchez, A. (2023). Catalytic synthesis of biosourced polyesters from epoxides and cyclic anhydrides. In Biopolymers (pp. 347–383). Elsevier. https://doi.org/10.1016/B978-0-323-90939-6.00006-6
De, P. B., Asako, S., & Ilies, L. (2021). Recent advances in the use of sodium dispersion for organic synthesis. Synthesis, 53(18), 3180–3192. https://doi.org/10.1055/a-1478-7061
Diallo, A. K., Kirillov, E., Slawinski, M., Brusson, J.-M., Guillaume, S. M., & Carpentier, J.-F. (2015). Syndioselective ring-opening polymerization and copolymerization of trans-1, 4-cyclohexadiene carbonate mediated by achiral metal-and organo-catalysts. Polymer Chemistry, 6(11), 1961–1971. https://doi.org/10.1039/C4PY01713G
Franck, H.-G., & Stadelhofer, J. W. (2012). Industrial aromatic chemistry: raw materials· processes· products. Springer Science & Business Media.
Gao, Y., Kubota, K., & Ito, H. (2023). Mechanochemical Approach for Air‐Tolerant and Extremely Fast Lithium‐Based Birch Reductions in Minutes. Angewandte Chemie, 135(21), e202217723. https://doi.org/10.1002/ange.202217723
Ghosh, S., Acharyya, S. S., Adak, S., Konathala, L. N. S., Sasaki, T., & Bal, R. (2014). Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chemistry, 16(5), 2826–2834. https://doi.org/10.1039/C4GC00130C
Henríquez, A., Melin, V., Moreno, N., Mansilla, H. D., & Contreras, D. (2019). Optimization of cyclohexanol and cyclohexanone yield in the photocatalytic oxofunctionalization of cyclohexane over Degussa P-25 under visible light. Molecules, 24(12), 2244. https://doi.org/10.3390/molecules24122244
Hong, Y., Sun, D., & Fang, Y. (2018). The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO 4 berlinite by oxygen under atmospheric pressure. Chemistry Central Journal, 12, 1–9. https://doi.org/10.1186/s13065-018-0405-6
Hook, J. M., & Mander, L. N. (1986). Recent developments in the Birch reduction of aromatic compounds: applications to the synthesis of natural products. Natural Product Reports, 3, 35–85. https://doi.org/10.1039/NP9860300035
Hosseini Nejad, E., van Melis, C. G. W., Vermeer, T. J., Koning, C. E., & Duchateau, R. (2012). Alternating ring-opening polymerization of cyclohexene oxide and anhydrides: Effect of catalyst, cocatalyst, and anhydride structure. Macromolecules, 45(4), 1770–1776. https://doi.org/10.1021/ma2025804
Hronec, M., Cvengrošová, Z., Králik, M., Palma, G., & Corain, B. (1996). Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts. Journal of Molecular Catalysis A: Chemical, 105(1–2), 25–30. https://doi.org/10.1016/1381-1169(95)00184-0
Ishifune, M., Yamashita, H., Kera, Y., Yamashita, N., Hirata, K., Murase, H., & Kashimura, S. (2003). Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors. Electrochimica Acta, 48(17), 2405–2409. https://doi.org/10.1016/S0013-4686(03)00259-7
Jin, H., Yuan, W., Li, W., Yang, J., Zhou, Z., Zhao, L., Li, Y., & Qi, F. (2023). Combustion chemistry of aromatic hydrocarbons. Progress in Energy and Combustion Science, 96, 101076. https://doi.org/10.1016/j.pecs.2023.101076
Jorschick, H., Preuster, P., Bösmann, A., & Wasserscheid, P. (2021). Hydrogenation of aromatic and heteroaromatic compounds–a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems. Sustainable Energy & Fuels, 5(5), 1311–1346. https://doi.org/10.1039/D0SE01369B
Kerzig, C., Guo, X., & Wenger, O. S. (2019). Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. Journal of the American Chemical Society, 141(5), 2122–2127. https://doi.org/10.1021/jacs.8b12223
Kiritsakis, A. K. (1998). Flavor components of olive oil—A review. Journal of the American Oil Chemists’ Society, 75(6), 673–681. https://doi.org/10.1007/s11746-998-0205-6
Kluson, P., & Cerveny, L. (1995). Selective hydrogenation over ruthenium catalysts. Applied Catalysis A: General, 128(1), 13–31. https://doi.org/10.1016/0926-860X(95)00046-1
Kondo, K., Kubota, K., & Ito, H. (2024). Mechanochemistry enabling highly efficient Birch reduction using sodium lumps and D-(+)-glucose. Chemical Science, 15(12), 4452–4457. https://doi.org/10.1039/d3sc06052g
Lei, P., Ding, Y., Zhang, X., Adijiang, A., Li, H., Ling, Y., & An, J. (2018). A practical and chemoselective ammonia-free Birch reduction. Organic Letters, 20(12), 3439–3442. https://doi.org/10.1021/acs.orglett.8b00891
Mortier, J. (2015). Arene chemistry: reaction mechanisms and methods for aromatic compounds. John Wiley & Sons.
Na, N., Xia, Y., Zhu, Z., Zhang, X., & Cooks, R. G. (2009). Birch reduction of benzene in a low‐temperature plasma. Angewandte Chemie, 121(11), 2051–2053. https://doi.org/10.1002/ange.200805256
Nemirovich, T., Young, B., Brezina, K., Mason, P. E., Seidel, R., Stemer, D., Winter, B., Jungwirth, P., Bradforth, S. E., & Schewe, H. C. (2024). Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction. Journal of the American Chemical Society, 146(12), 8043–8057. https://doi.org/10.1021/jacs.3c11655
O’Connor, R. P., & Schmidt, L. D. (2001). Oxygenates and olefins from catalytic partial oxidation of cyclohexane and n-hexane in single-gauze chemical reactors. In Studies in Surface Science and Catalysis (Vol. 133, pp. 289–296). Elsevier. https://doi.org/10.1016/S0167-2991(01)81974-1
Rabideau, P. W. (1989). The metal-ammonia reduction of aromatic compounds. Tetrahedron, 45(6), 1579–1603. https://doi.org/10.1016/S0040-4020(01)80022-3
Shi, R., Wang, Z., Zhao, Y., Waterhouse, G. I. N., Li, Z., Zhang, B., Sun, Z., Xia, C., Wang, H., & Zhang, T. (2021). Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 4(7), 565–574. https://doi.org/10.1038/s41929-021-00640-y
Shiraishi, Y., Sugano, Y., Ichikawa, S., & Hirai, T. (2012). Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catalysis Science & Technology, 2(2), 400–405. https://doi.org/10.1039/C1CY00331C
Tobal, I. E., Bautista, R., Diez, D., Garrido, N. M., & García-García, P. (2021). 1, 3-cyclohexadien-1-als: Synthesis, reactivity and bioactivities. Molecules, 26(6), 1772. https://doi.org/10.3390/molecules26061772
Winkler, M., Romain, C., Meier, M. A. R., & Williams, C. K. (2015). Renewable polycarbonates and polyesters from 1, 4-cyclohexadiene. Green Chemistry, 17(1), 300–306. https://doi.org/10.1039/C4GC01353K
Yamashita, Y., Hamaguchi, K., Machida, S., Mukai, K., Yoshinobu, J., Tanaka, S., & Kamada, M. (2001). Adsorbed states of cyclopentene, cyclohexene, and 1, 4-cyclohexadiene on Si (1 0 0)(2× 1): towards the fabrication of novel organic films/Si hybrid structures. Applied Surface Science, 169, 172–175. https://doi.org/10.1016/S0169-4332(00)00725-X
Zimmerman, H. E. (2012). A mechanistic analysis of the Birch reduction. Accounts of Chemical Research, 45(2), 164–170. https://doi.org/10.1021/ar2000698