Main Article Content

Abstract

Derivatives of 1,4-cyclohexadiene are widely used in industrial chemistry and the synthesis of organic materials. However, extracting these essential cyclic hydrocarbons is often complex and challenging. An efficient alternative involves the reduction of benzene and other aromatic compounds via the Birch reduction method. This process employs sodium or lithium as reducing agents in liquid ammonia, with an alcohol such as methanol, ethanol, or butanol, to convert aromatic compounds into 1,4-cyclohexadiene. Over time, various modifications to the Birch reduction, including ammonia-free, metal-free photochemical, solvent-free, and electrode-mediated approaches, have been developed. This review compares these techniques regarding chemo-selectivity, regioselectivity, reaction conditions, efficiency, and environmentally sustainable practices.

Keywords

Birch reduction Aromatic compounds 1-4-cyclohexadiene Industrial chemistry Extraction

Article Details

Author Biography

Mohammad Tahir Aminzai, Kabul Unversity, Faculty of Chemistry, Department of Organic Chemistry, Afghanistan

روغن خام نباتی که از طریق فشار میخانیکی یا استخراج با محلل به دست می‌آید، شامل انواع ناخالصی‌های است که به طور طبیعی در دانه‌های روغنی موجود می‌باشند. روغن‌های خام نباتی تقریباً از ۹۸ درصد ترای گلیسراید و سایر مرکبات مانند پروتین‌ها، ویتامین‌ها، اسیدهای شحمی آزاد، صمغ‌ها، رزین‌ها، الدیهاید‌ها، کیتون‌ها، فاسفیت‌ها و غیره به نسبت جزئی تشکیل شده اند. به غیر از روغن‌ زیتون، متباقی روغن‌های خام مانند روغن‌های سویا، جواری، گل آفتاب‌پرست وغیره را نمی‌توان بدون انجام پروسه‌های تصفیه‌سازی مستقیماً مصرف کرد. هدف از تصفیه روغن، به دست آوردن کیفیت بهتر، بی‌بو، رنگ روشن‌تر، پایداری طولانی‌تر و صحی ساختن آن می‌باشد. در این مقاله مروری تصفیه فزیکی و کیمیاوی روغن خام نباتی مورد بحث قرار گرفته و در نتیجه فواید و نواقص هر دو میتود به تفصیل توضیح داده شده است.

 

How to Cite
Aminzai, M. T., & Zhwand, A. K. (2024). Investigation of Recent Advances in the Reduction of Aromatic Compounds Using the Birch Reduction Method. Journal of Natural Sciences – Kabul University, 7(3), 43–61. https://doi.org/10.62810/jns.v7i3.29

References

  1. Ahmad, J., Bazaka, K., Oelgemöller, M., & Jacob, M. V. (2014). Wetting, solubility and chemical characteristics of plasma-polymerized 1-isopropyl-4-methyl-1, 4-cyclohexadiene thin films. Coatings, 4(3), 527–552. https://doi.org/10.3390/coatings4030527
  2. Akhrem, A. A. (2012). Birch reduction of aromatic compounds.
  3. Ali, S. A. (2007). Thermodynamic aspects of aromatic hydrogenation. Petroleum Science and Technology, 25(10), 1293–1304. https://doi.org/10.1080/10916460500528607
  4. Asako, S., Takahashi, I., Kurogi, T., Murakami, Y., Ilies, L., & Takai, K. (2022). Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. Chemistry Letters, 51(1), 38–40. https://doi.org/10.1246/cl.210546
  5. Baschieri, A., Amorati, R., Valgimigli, L., & Sambri, L. (2019). 1-Methyl-1, 4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. The Journal of Organic Chemistry, 84(21), 13655–13664. https://doi.org/10.1021/acs.joc.9b01898
  6. Benkeser, R. A., & Belmonte, F. G. (1984). Reduction of alkynes by a new reducing system. The Journal of Organic Chemistry, 49(9), 1662–1664. https://doi.org/10.1021/jo00183a038
  7. Birch, A. J. (1944). 117. Reduction by dissolving metals. Part I. Journal of the Chemical Society (Resumed), 430–436. https://doi.org/10.1039/JR9440000430
  8. Birch, A. J. (1996). The Birch reduction in organic synthesis. Pure and Applied Chemistry, 68(3), 553–556. https://doi.org/10.1351/pac199668030553
  9. Boll, M., Fuchs, G., & Heider, J. (2002). Anaerobic oxidation of aromatic compounds and hydrocarbons. Current Opinion in Chemical Biology, 6(5), 604–611. https://doi.org/10.1016/S1367-5931(02)00375-7
  10. Burrows, J., Kamo, S., & Koide, K. (2021). Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science, 374(6568), 741–746. https://doi.org/10.1126/science.abk30
  11. Cao, H., Zhu, B., Yang, Y., Xu, L., Yu, L., & Xu, Q. (2018). Recent advances on controllable and selective catalytic oxidation of cyclohexene. Chinese Journal of Catalysis, 39(5), 899–907. https://doi.org/10.1016/S1872-2067(18)63050-5
  12. Che, M. (2013). Nobel Prize in chemistry 1 912 to Sabatier: Organic chemistry or catalysis? Catalysis Today, 218, 162–171. https://doi.org/10.1016/j.cattod.2013.07.006
  13. Chen, Z., Sun, H., Peng, Z., Gao, J., Li, B., Liu, Z., & Liu, S. (2019). Selective hydrogenation of benzene: progress of understanding for the Ru-based catalytic system design. Industrial & Engineering Chemistry Research, 58(31), 13794–13803. https://doi.org/10.1021/acs.iecr.9b01475
  14. Cole, J. P., Chen, D.-F., Kudisch, M., Pearson, R. M., Lim, C.-H., & Miyake, G. M. (2020). Organocatalyzed Birch reduction driven by visible light. Journal of the American Chemical Society, 142(31), 13573–13581. https://doi.org/10.1021/jacs.0c05899
  15. Costanzo, M. J., Patel, M. N., Petersen, K. A., & Vogt, P. F. (2009). Ammonia-free Birch reductions with sodium stabilized in silica gel, Na–SG (I). Tetrahedron Letters, 50(39), 5463–5466. https://doi.org/10.1016/j.tetlet.2009.07.040
  16. Davison, N., Quirk, J. A., Tuna, F., Collison, D., McMullin, C. L., Michaels, H., Morritt, G. H., Waddell, P. G., Gould, J. A., & Freitag, M. (2023). A room-temperature-stable electride and its reactivity: Reductive benzene/pyridine couplings and solvent-free Birch reductions. Chem, 9(3), 576–591. 10.1016/j.chempr.2022.11.006
  17. de la Cruz-Martínez, F., de Sarasa Buchaca, M. M., Castro-Osma, J. A., & Lara-Sánchez, A. (2023). Catalytic synthesis of biosourced polyesters from epoxides and cyclic anhydrides. In Biopolymers (pp. 347–383). Elsevier. https://doi.org/10.1016/B978-0-323-90939-6.00006-6
  18. De, P. B., Asako, S., & Ilies, L. (2021). Recent advances in the use of sodium dispersion for organic synthesis. Synthesis, 53(18), 3180–3192. https://doi.org/10.1055/a-1478-7061
  19. Diallo, A. K., Kirillov, E., Slawinski, M., Brusson, J.-M., Guillaume, S. M., & Carpentier, J.-F. (2015). Syndioselective ring-opening polymerization and copolymerization of trans-1, 4-cyclohexadiene carbonate mediated by achiral metal-and organo-catalysts. Polymer Chemistry, 6(11), 1961–1971. https://doi.org/10.1039/C4PY01713G
  20. Franck, H.-G., & Stadelhofer, J. W. (2012). Industrial aromatic chemistry: raw materials· processes· products. Springer Science & Business Media.
  21. Gao, Y., Kubota, K., & Ito, H. (2023). Mechanochemical Approach for Air‐Tolerant and Extremely Fast Lithium‐Based Birch Reductions in Minutes. Angewandte Chemie, 135(21), e202217723. https://doi.org/10.1002/ange.202217723
  22. Ghosh, S., Acharyya, S. S., Adak, S., Konathala, L. N. S., Sasaki, T., & Bal, R. (2014). Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chemistry, 16(5), 2826–2834. https://doi.org/10.1039/C4GC00130C
  23. Henríquez, A., Melin, V., Moreno, N., Mansilla, H. D., & Contreras, D. (2019). Optimization of cyclohexanol and cyclohexanone yield in the photocatalytic oxofunctionalization of cyclohexane over Degussa P-25 under visible light. Molecules, 24(12), 2244. https://doi.org/10.3390/molecules24122244
  24. Hong, Y., Sun, D., & Fang, Y. (2018). The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO 4 berlinite by oxygen under atmospheric pressure. Chemistry Central Journal, 12, 1–9. https://doi.org/10.1186/s13065-018-0405-6
  25. Hook, J. M., & Mander, L. N. (1986). Recent developments in the Birch reduction of aromatic compounds: applications to the synthesis of natural products. Natural Product Reports, 3, 35–85. https://doi.org/10.1039/NP9860300035
  26. Hosseini Nejad, E., van Melis, C. G. W., Vermeer, T. J., Koning, C. E., & Duchateau, R. (2012). Alternating ring-opening polymerization of cyclohexene oxide and anhydrides: Effect of catalyst, cocatalyst, and anhydride structure. Macromolecules, 45(4), 1770–1776. https://doi.org/10.1021/ma2025804
  27. Hronec, M., Cvengrošová, Z., Králik, M., Palma, G., & Corain, B. (1996). Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts. Journal of Molecular Catalysis A: Chemical, 105(1–2), 25–30. https://doi.org/10.1016/1381-1169(95)00184-0
  28. Ishifune, M., Yamashita, H., Kera, Y., Yamashita, N., Hirata, K., Murase, H., & Kashimura, S. (2003). Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors. Electrochimica Acta, 48(17), 2405–2409. https://doi.org/10.1016/S0013-4686(03)00259-7
  29. Jin, H., Yuan, W., Li, W., Yang, J., Zhou, Z., Zhao, L., Li, Y., & Qi, F. (2023). Combustion chemistry of aromatic hydrocarbons. Progress in Energy and Combustion Science, 96, 101076. https://doi.org/10.1016/j.pecs.2023.101076
  30. Jorschick, H., Preuster, P., Bösmann, A., & Wasserscheid, P. (2021). Hydrogenation of aromatic and heteroaromatic compounds–a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems. Sustainable Energy & Fuels, 5(5), 1311–1346. https://doi.org/10.1039/D0SE01369B
  31. Kerzig, C., Guo, X., & Wenger, O. S. (2019). Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. Journal of the American Chemical Society, 141(5), 2122–2127. https://doi.org/10.1021/jacs.8b12223
  32. Kiritsakis, A. K. (1998). Flavor components of olive oil—A review. Journal of the American Oil Chemists’ Society, 75(6), 673–681. https://doi.org/10.1007/s11746-998-0205-6
  33. Kluson, P., & Cerveny, L. (1995). Selective hydrogenation over ruthenium catalysts. Applied Catalysis A: General, 128(1), 13–31. https://doi.org/10.1016/0926-860X(95)00046-1
  34. Kondo, K., Kubota, K., & Ito, H. (2024). Mechanochemistry enabling highly efficient Birch reduction using sodium lumps and D-(+)-glucose. Chemical Science, 15(12), 4452–4457. https://doi.org/10.1039/d3sc06052g
  35. Lei, P., Ding, Y., Zhang, X., Adijiang, A., Li, H., Ling, Y., & An, J. (2018). A practical and chemoselective ammonia-free Birch reduction. Organic Letters, 20(12), 3439–3442. https://doi.org/10.1021/acs.orglett.8b00891
  36. Mortier, J. (2015). Arene chemistry: reaction mechanisms and methods for aromatic compounds. John Wiley & Sons.
  37. Na, N., Xia, Y., Zhu, Z., Zhang, X., & Cooks, R. G. (2009). Birch reduction of benzene in a low‐temperature plasma. Angewandte Chemie, 121(11), 2051–2053. https://doi.org/10.1002/ange.200805256
  38. Nemirovich, T., Young, B., Brezina, K., Mason, P. E., Seidel, R., Stemer, D., Winter, B., Jungwirth, P., Bradforth, S. E., & Schewe, H. C. (2024). Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction. Journal of the American Chemical Society, 146(12), 8043–8057. https://doi.org/10.1021/jacs.3c11655
  39. O’Connor, R. P., & Schmidt, L. D. (2001). Oxygenates and olefins from catalytic partial oxidation of cyclohexane and n-hexane in single-gauze chemical reactors. In Studies in Surface Science and Catalysis (Vol. 133, pp. 289–296). Elsevier. https://doi.org/10.1016/S0167-2991(01)81974-1
  40. Rabideau, P. W. (1989). The metal-ammonia reduction of aromatic compounds. Tetrahedron, 45(6), 1579–1603. https://doi.org/10.1016/S0040-4020(01)80022-3
  41. Shi, R., Wang, Z., Zhao, Y., Waterhouse, G. I. N., Li, Z., Zhang, B., Sun, Z., Xia, C., Wang, H., & Zhang, T. (2021). Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 4(7), 565–574. https://doi.org/10.1038/s41929-021-00640-y
  42. Shiraishi, Y., Sugano, Y., Ichikawa, S., & Hirai, T. (2012). Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catalysis Science & Technology, 2(2), 400–405. https://doi.org/10.1039/C1CY00331C
  43. Tobal, I. E., Bautista, R., Diez, D., Garrido, N. M., & García-García, P. (2021). 1, 3-cyclohexadien-1-als: Synthesis, reactivity and bioactivities. Molecules, 26(6), 1772. https://doi.org/10.3390/molecules26061772
  44. Winkler, M., Romain, C., Meier, M. A. R., & Williams, C. K. (2015). Renewable polycarbonates and polyesters from 1, 4-cyclohexadiene. Green Chemistry, 17(1), 300–306. https://doi.org/10.1039/C4GC01353K
  45. Yamashita, Y., Hamaguchi, K., Machida, S., Mukai, K., Yoshinobu, J., Tanaka, S., & Kamada, M. (2001). Adsorbed states of cyclopentene, cyclohexene, and 1, 4-cyclohexadiene on Si (1 0 0)(2× 1): towards the fabrication of novel organic films/Si hybrid structures. Applied Surface Science, 169, 172–175. https://doi.org/10.1016/S0169-4332(00)00725-X
  46. Zimmerman, H. E. (2012). A mechanistic analysis of the Birch reduction. Accounts of Chemical Research, 45(2), 164–170. https://doi.org/10.1021/ar2000698