Main Article Content
Abstract
Bovine mastitis caused by infectious agents remains a significant condition affecting dairy cattle, resulting in substantial economic losses globally. It is the most prevalent disease in dairy cattle, and routine diagnosis differentiates between its clinical and subclinical forms. Various therapeutic approaches, including antibiotics, bacteriophages, antimicrobial peptides, probiotics, herbal treatments, nutritional therapies, dry cow treatments, lactation therapies, and genetic selection, have been evaluated for their effectiveness. This review aims to identify bacterial causes of mastitis, assess their antibiotic sensitivity, and propose suitable solutions for its treatment and control. Mastitis adversely affects milk quality and animal health, leading to increased economic losses and higher culling rates in dairy production systems.
Keywords
Article Details
Copyright (c) 2024 Reserved for Kabul University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Mengliyev, G. A., Kuzibaeva, O. E. K., Kuzibaeva, D. A. Urazov, S. A. Diagnosis And Treatment Of Mastitis In Cows, American Journal of Veterinary Sciences and Wildlife Discovery, 2021; 31: 1-4.
- Sumaya, Y.A. Al-Dabbagh, Ebtehal N. Mahmmoud, Aamer, Y. H. Al-Chalaby Bacterial. Bovine Mastitis in Iraq: a review, Basrah Journal of Veterinary Research, 2020; Vol (21): 76-101.
- Khan, S., Kuldeep, D., Ruchi, T., Mudasir B. Gugjoo, M., Iqbal, Y., Shailesh, K. Patel, Mamta Pathak, Kumar, Karthik. , Sandip Kumar Khurana , Rahul Singh , Bhavani, P. A., Rajendra S., Karam Pal Singh & Wanpen, C. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review, Veterinary Quarterly, 2021; 41(1): 107-136.
- Das, D., Panda, S. K., Jena, B., Sahoo, A.K. Economic impact of subclinical and clinical mastitis in Odisha, India. Int J.CurrMicrobiolA Sci. 2018; 7(03): 3651–3654.
- Garcia, A. Contagious vs. environmental Mastitis. Extension Extra. Paper http://openprairie.sdstate. edu/extension_extra/. 2004; 126.
- Klaas, I. C., Zadoks, R. N. An update on environmental mastitis: challenging perceptions. Transbound Emerg Dis. 2018; 65(1):166–185.
- Ruegg, P. L. A 100-year review: mastitis detection, management, and prevention. J Dairy Sci. 2017; 100(12): 10381–10397.
- Levison, L.J., Miller-Cushon, E.K., Tucker, A.L., Bergeron, R., Leslie, K. E, Barkema H.W, DeVries, T.J. Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J. Dairy Sci. 2016; 99(2): 1341–1350.
- Wawron, W., Bochniarz, M., Piech, T. Yeast Mastitis in Dairy Cows in the Middle-eastern Part of Poland. Bull Vet Inst Pulawy. 2010; 54:201–204.
- Kumar, G. S. N., Apannavar, M.M., Surnagi, M. D., Kotresh, A. M. Study on incidence and economics of clinical mastitis. Karnataka J Agric Sci. 2010; 23:407–408.
- Sinha, M. K., Thombare, N. N., Mondal, B. Subclinical mastitis in dairy animals: incidence, economics, and predisposing factors. Sci World J. 2014; 52:39-44.
- Harjanti, D. W., Ciptaningtyas, R., Wahyono, F., Setiatin, E.T. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia. International Symposium on Food and Agro-Biodiversity (ISFA). IOP Conf Ser: J. Earth Environ Sci. 2018; 102:012076.
- Kandeel, S. A, Morin, D. E., Calloway, C. D., Constable, P. D. Association of California mastitis test scores with intramammary infection status in lactating dairy cows admitted to a veterinary teaching hospital. J. Vet Intern Med. 2018; 32(1):497–505.
- Nabil, M.I.S.K., Tarik, M.I.S.K., EL-Khamary, A., Semeika, MA retrospective study of surgical affections of mammary glands in cattle and buffaloes and their management in the field. J. Veterin Med Sci. 2018; 80(10):1576–1583.
- Tiwari, R., Chakraborty, S., Dhama, K., Rajagunalan, S., Singh, S.V. Antibiotic resistance - an emerging health problem: causes, worries, challenges and solutions – a review. Int J Curr Res. 2013; 5(07):1880–1892.
- Anika, T. T., Al Noman, Z, Ferdous, M.R.A., Khan, S.H., Mukta, M.A., Islam, M.S., Hossain, M.T., Rafiq, K. Time dependent screening of antibiotic residues in milk of antibiotics treated cows. J. Adv Vet Anim Res. 2019; 6(4):516–520.
- Lima, M.G.B., Blagitz, M.G., Souza, F.N., Sanchez, E.M.R, Batista, C.F., Bertagnon, H.G., Diniz, S.A., Silva, M.X., Della, Libera, A.M.M.PProfile of immunoglobulins, clinical and bacteriological cure after different treatment routes of clinical bovine mastitis. Arq Bras Med Vet Zootec. . 2018; 70(4): 1141–1149.
- Tiwari, R, Dhama, K., Chakraborty, S., Kumar, A, Rahal, A., Kapoor, S. Bacteriophage therapy for safeguarding animal and human health: A review. Pak J Biol Sci. 2014; 17(3): 301–315.
- Amiri Fahliyani, S., Beheshti-Maal K., Ghandehari, F. Novel lytic bacteriophages of Klebsiella oxytoca ABGIAUF-1 as the potential agents for mastitis phage therapy. 2018; 365(20): 223.
- Breyne, K., Honaker, R.W., Hobbs, Z., Richter, M., Zaczek, M., Spangler, T., Steenbrugge, J., Lu, R., Kinkhabwala, A., Marchon, B... Efficacy and safety of a bovineassociated Staphylococcus aureus phage cocktail in a murine model of mastitis. Front Microbiol. 2017; 8:23-28.
- Fenton, M., Keary, R., McAuliffe, O., Ross, R. P., O. Mahony, J., Coffey, A. Bacteriophage-derived peptidase CHAP (K) Eliminates and prevents Staphylococcal biofilms. Int J Microbiol. 2013; 9(3):551–561.
- Cheng, W.N., Jeong, C.H., Seo, H.G., Hau, S.G. Moringa extract attenuates inflammatory responses and increases gene expression of casein in bovine mammary epithelial cells. J. Ani sc. 2019; 7:391.
- Wallis, J. K., Kromker, V., Paduch, J. HBiofilm formation and adhesion to bovine udder epithelium of potentially probiotic lactic acid bacteria. AIMS Microbiol. 2018; 4(2): 209–224.
- Hu, X., Li, S., Fu, Y., Zhang, N. Targeting gut microbiota as a possible therapy for mastitis. Eur J Clin Microbiol Infect Dis. 2019; 38(8):1409–1423.
- Qiao, J., Kwok, L., Zhang, J., Gao, P., Zheng, Y., Guo, Z., Hou, Q., Huo, D., Huang, W., Zhang, H. Reduction of Lactobacillus in the milks of cows with subclinical mastitis. Benef Microbes. 2015; 6(4):485–490.
- Tiwari, R., Latheef, S.K., Ahmed, I., Iqbal, H.M.N., Bule, M.H., Dhama, K., Samad, H.A., Karthik, K., Alagawany, M. Herbal immunomodulators a remedial panacea for designing and developing effective drugs and medicines: Current scenario and future prospects. 2018; 19(3):264–301.
- Yang, W.T., Ke, C.Y., Wu, W.T., Lee, R.P., Tseng, Y.HEffective Treatment of Bovine Mastitis with Intramammary infusion of Angelica Dahurica and Rheum officinale extracts: 2019; 7(24): 27-35.
- Avancini, C., Wiest, J. M., Dall’Agnol, R., Haas, J.S., von Poser, G.L. Antimicrobial activity of plants used in the prevention and control of bovine mastitis in Southern Brazil. Latin Am J Pharm. 2008; 27(6):894–899.
- Weigel, K.A., Shook, G.E. Genetic selection for mastitis resistance. Vet Clinics: J. Food Anim Pract. 2018; 34(3):457–472.
- Ganda, E.K., Bisinotto, R.S., Vasquez, A.K., Teixeira, A.G.V., Machado, V.S., Foditsch, C., Bicalho, M., Lima, F.S., Stephens, L., Gomes, M.SEffects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts. J Dairy Sci. . . . 2016; 99(9):7319–7329.
- Merriman, K.E., Poindexter, M.B., Kweh, M.F., Santos, J.E.P., Nelson, C.D. Intramammary 1,25-dihydroxyvitamin D3 treatment increases expression of host-defense genes in mammary immune cells of lactating dairy cattle. J Steroid Biochem Mol Biol. 2017; 173:33–41.
- van den Borne, B.H.P., van Schaik, G., Lam, T.J.G.M., Nielen. M., Frankena, K. Intramammary antimicrobial treatment of subclinical mastitis and cow performance later in lactation. J Dairy Sci. 2019; 102(5):4441–4451.
- ) Cameron, M., Keefe, G.P., Roy, J.P., Stryhn, H., Dohoo, I.R., McKenna, S.L. Evaluation of selective dry cow treatment following on-farm culture: milk yield and somatic cell count in the subsequent lactation. J Dairy Sci. 2015; 98(4): 2427–2436.
- Halasa, T., Nielen, M., Whist, A.C, Qsteras, O. Meta-analysis of dry cow management for dairy cattle. Part 2. Cure of existing intramammary infections. J. Dairy Sci. 2009; 92(7):3150–3157.
- Berry, E.A., Hillerton, J.E. The effect of selective dry cow treatment on new intramammary infections. J Dairy Sci. 2002; 85(1):112–121.
- Kromker, V., Friedrich, J. Teat canal closure in non-lactating heifers and its association with udder health in the consecutive lactation. J. Vet Microbiol. 2009; 134(1-2): 100–105.
- Parker, K.I., Compton, C., Anniss, F.M., Weir, A., Heuer, C., McDougall, S. Subclinical and clinical mastitis in heifers following the use of a teat sealant precalving. J. Dairy Sci. 2007; 90(1):207–218.
References
Mengliyev, G. A., Kuzibaeva, O. E. K., Kuzibaeva, D. A. Urazov, S. A. Diagnosis And Treatment Of Mastitis In Cows, American Journal of Veterinary Sciences and Wildlife Discovery, 2021; 31: 1-4.
Sumaya, Y.A. Al-Dabbagh, Ebtehal N. Mahmmoud, Aamer, Y. H. Al-Chalaby Bacterial. Bovine Mastitis in Iraq: a review, Basrah Journal of Veterinary Research, 2020; Vol (21): 76-101.
Khan, S., Kuldeep, D., Ruchi, T., Mudasir B. Gugjoo, M., Iqbal, Y., Shailesh, K. Patel, Mamta Pathak, Kumar, Karthik. , Sandip Kumar Khurana , Rahul Singh , Bhavani, P. A., Rajendra S., Karam Pal Singh & Wanpen, C. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review, Veterinary Quarterly, 2021; 41(1): 107-136.
Das, D., Panda, S. K., Jena, B., Sahoo, A.K. Economic impact of subclinical and clinical mastitis in Odisha, India. Int J.CurrMicrobiolA Sci. 2018; 7(03): 3651–3654.
Garcia, A. Contagious vs. environmental Mastitis. Extension Extra. Paper http://openprairie.sdstate. edu/extension_extra/. 2004; 126.
Klaas, I. C., Zadoks, R. N. An update on environmental mastitis: challenging perceptions. Transbound Emerg Dis. 2018; 65(1):166–185.
Ruegg, P. L. A 100-year review: mastitis detection, management, and prevention. J Dairy Sci. 2017; 100(12): 10381–10397.
Levison, L.J., Miller-Cushon, E.K., Tucker, A.L., Bergeron, R., Leslie, K. E, Barkema H.W, DeVries, T.J. Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J. Dairy Sci. 2016; 99(2): 1341–1350.
Wawron, W., Bochniarz, M., Piech, T. Yeast Mastitis in Dairy Cows in the Middle-eastern Part of Poland. Bull Vet Inst Pulawy. 2010; 54:201–204.
Kumar, G. S. N., Apannavar, M.M., Surnagi, M. D., Kotresh, A. M. Study on incidence and economics of clinical mastitis. Karnataka J Agric Sci. 2010; 23:407–408.
Sinha, M. K., Thombare, N. N., Mondal, B. Subclinical mastitis in dairy animals: incidence, economics, and predisposing factors. Sci World J. 2014; 52:39-44.
Harjanti, D. W., Ciptaningtyas, R., Wahyono, F., Setiatin, E.T. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia. International Symposium on Food and Agro-Biodiversity (ISFA). IOP Conf Ser: J. Earth Environ Sci. 2018; 102:012076.
Kandeel, S. A, Morin, D. E., Calloway, C. D., Constable, P. D. Association of California mastitis test scores with intramammary infection status in lactating dairy cows admitted to a veterinary teaching hospital. J. Vet Intern Med. 2018; 32(1):497–505.
Nabil, M.I.S.K., Tarik, M.I.S.K., EL-Khamary, A., Semeika, MA retrospective study of surgical affections of mammary glands in cattle and buffaloes and their management in the field. J. Veterin Med Sci. 2018; 80(10):1576–1583.
Tiwari, R., Chakraborty, S., Dhama, K., Rajagunalan, S., Singh, S.V. Antibiotic resistance - an emerging health problem: causes, worries, challenges and solutions – a review. Int J Curr Res. 2013; 5(07):1880–1892.
Anika, T. T., Al Noman, Z, Ferdous, M.R.A., Khan, S.H., Mukta, M.A., Islam, M.S., Hossain, M.T., Rafiq, K. Time dependent screening of antibiotic residues in milk of antibiotics treated cows. J. Adv Vet Anim Res. 2019; 6(4):516–520.
Lima, M.G.B., Blagitz, M.G., Souza, F.N., Sanchez, E.M.R, Batista, C.F., Bertagnon, H.G., Diniz, S.A., Silva, M.X., Della, Libera, A.M.M.PProfile of immunoglobulins, clinical and bacteriological cure after different treatment routes of clinical bovine mastitis. Arq Bras Med Vet Zootec. . 2018; 70(4): 1141–1149.
Tiwari, R, Dhama, K., Chakraborty, S., Kumar, A, Rahal, A., Kapoor, S. Bacteriophage therapy for safeguarding animal and human health: A review. Pak J Biol Sci. 2014; 17(3): 301–315.
Amiri Fahliyani, S., Beheshti-Maal K., Ghandehari, F. Novel lytic bacteriophages of Klebsiella oxytoca ABGIAUF-1 as the potential agents for mastitis phage therapy. 2018; 365(20): 223.
Breyne, K., Honaker, R.W., Hobbs, Z., Richter, M., Zaczek, M., Spangler, T., Steenbrugge, J., Lu, R., Kinkhabwala, A., Marchon, B... Efficacy and safety of a bovineassociated Staphylococcus aureus phage cocktail in a murine model of mastitis. Front Microbiol. 2017; 8:23-28.
Fenton, M., Keary, R., McAuliffe, O., Ross, R. P., O. Mahony, J., Coffey, A. Bacteriophage-derived peptidase CHAP (K) Eliminates and prevents Staphylococcal biofilms. Int J Microbiol. 2013; 9(3):551–561.
Cheng, W.N., Jeong, C.H., Seo, H.G., Hau, S.G. Moringa extract attenuates inflammatory responses and increases gene expression of casein in bovine mammary epithelial cells. J. Ani sc. 2019; 7:391.
Wallis, J. K., Kromker, V., Paduch, J. HBiofilm formation and adhesion to bovine udder epithelium of potentially probiotic lactic acid bacteria. AIMS Microbiol. 2018; 4(2): 209–224.
Hu, X., Li, S., Fu, Y., Zhang, N. Targeting gut microbiota as a possible therapy for mastitis. Eur J Clin Microbiol Infect Dis. 2019; 38(8):1409–1423.
Qiao, J., Kwok, L., Zhang, J., Gao, P., Zheng, Y., Guo, Z., Hou, Q., Huo, D., Huang, W., Zhang, H. Reduction of Lactobacillus in the milks of cows with subclinical mastitis. Benef Microbes. 2015; 6(4):485–490.
Tiwari, R., Latheef, S.K., Ahmed, I., Iqbal, H.M.N., Bule, M.H., Dhama, K., Samad, H.A., Karthik, K., Alagawany, M. Herbal immunomodulators a remedial panacea for designing and developing effective drugs and medicines: Current scenario and future prospects. 2018; 19(3):264–301.
Yang, W.T., Ke, C.Y., Wu, W.T., Lee, R.P., Tseng, Y.HEffective Treatment of Bovine Mastitis with Intramammary infusion of Angelica Dahurica and Rheum officinale extracts: 2019; 7(24): 27-35.
Avancini, C., Wiest, J. M., Dall’Agnol, R., Haas, J.S., von Poser, G.L. Antimicrobial activity of plants used in the prevention and control of bovine mastitis in Southern Brazil. Latin Am J Pharm. 2008; 27(6):894–899.
Weigel, K.A., Shook, G.E. Genetic selection for mastitis resistance. Vet Clinics: J. Food Anim Pract. 2018; 34(3):457–472.
Ganda, E.K., Bisinotto, R.S., Vasquez, A.K., Teixeira, A.G.V., Machado, V.S., Foditsch, C., Bicalho, M., Lima, F.S., Stephens, L., Gomes, M.SEffects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts. J Dairy Sci. . . . 2016; 99(9):7319–7329.
Merriman, K.E., Poindexter, M.B., Kweh, M.F., Santos, J.E.P., Nelson, C.D. Intramammary 1,25-dihydroxyvitamin D3 treatment increases expression of host-defense genes in mammary immune cells of lactating dairy cattle. J Steroid Biochem Mol Biol. 2017; 173:33–41.
van den Borne, B.H.P., van Schaik, G., Lam, T.J.G.M., Nielen. M., Frankena, K. Intramammary antimicrobial treatment of subclinical mastitis and cow performance later in lactation. J Dairy Sci. 2019; 102(5):4441–4451.
) Cameron, M., Keefe, G.P., Roy, J.P., Stryhn, H., Dohoo, I.R., McKenna, S.L. Evaluation of selective dry cow treatment following on-farm culture: milk yield and somatic cell count in the subsequent lactation. J Dairy Sci. 2015; 98(4): 2427–2436.
Halasa, T., Nielen, M., Whist, A.C, Qsteras, O. Meta-analysis of dry cow management for dairy cattle. Part 2. Cure of existing intramammary infections. J. Dairy Sci. 2009; 92(7):3150–3157.
Berry, E.A., Hillerton, J.E. The effect of selective dry cow treatment on new intramammary infections. J Dairy Sci. 2002; 85(1):112–121.
Kromker, V., Friedrich, J. Teat canal closure in non-lactating heifers and its association with udder health in the consecutive lactation. J. Vet Microbiol. 2009; 134(1-2): 100–105.
Parker, K.I., Compton, C., Anniss, F.M., Weir, A., Heuer, C., McDougall, S. Subclinical and clinical mastitis in heifers following the use of a teat sealant precalving. J. Dairy Sci. 2007; 90(1):207–218.