د مقالې اصلي محتوا
خلاصه
گندم Triticum aestivum) )که غذای اصلی 89 کشور به شمول افغانستان را تشکیل میدهد احتمال کاهش حاصلات آن در حدود %40 به دلیل شدت گرما و شرایط خشک در جهان وجود دارد. به اساس Office of Global Analysis گندم وارد شده به افغانستان از سال ۲۰۱۶ الی ۲۰۱۹ از ۲۷۰۰ تن به ۳۷۰۰ تن افزایش یافته که تحقیقات در بخش گندم را نهایت ضروری میکند. تنش خشکی تأثیرات مخرب را در مراحل جوانه، ساقه، بوتهزنی، گلدهی و تشکیل خوشه به وجود میآورد اما ریشههای دراز، لایه واکس و منفذهای ستوماتا )کنترول میزان CO2در تعامل فتوسنتز( در خروج و نگهداری آب نقش مهم دارد. تنش محیطی ضرورت به (ATP) adenosine triphasphate را افزایش میدهد و انواع اکسیجین فعال (ROS)در شرایط خشکی تولید و منجر به آسیب نبات میشود. در گندم تعداد 309جین بهشمول فکتورهای رونویسی WRKY transcription factors بهشکل مثبت و فکتورهای ایتایلین مانعکنندههای جین در عکسالعمل به خشکی شناسایی شده است.
کلیدي ټکي
د مقالې جزئیات
د کاپی رایت بیان
د کرییټیو کامنز BY-NC 4.0 نړیوال لایسنسماخذونه
- Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem. 2017;5(DEC):1–13.
- Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, et al. Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res. 2012;19(2):165–77.
- Guo X, Xin Z, Yang T, Ma X, Zhang Y, Wang Z, et al. Metabolomics response for drought stress tolerance in chinese wheat genotypes (Triticum aestivum). Plants. 2020;9(4):1–15.
- Anwaar HA, Perveen R, Mansha MZ, Abid M, Sarwar ZM, Aatif HM, et al. Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi J Biol Sci (Internet). 2020;27(7):1818–23. Available from: https://doi.org/10.1016/j.sjbs.2019.12.009
- Hasanuzzaman M, Nahar K, Rahman A, Anee TI, Alam MU, Bhuiyan TF, et al. Approaches to Enhance Salt Stress Tolerance in Wheat. Wheat Improv Manag Util. 2017;(September).
- Liu C, Sukumaran S, Claverie E, Sansaloni C, Dreisigacker S, Reynolds M. Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Mol Breed. 2019;39(3).
- Ma J, Li R, Wang H, Li D, Wang X, Zhang Y, et al. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front Plant Sci. 2017;8(April):1–13.
- Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int J Mol Sci. 2019;20(13).
- Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M, Siddique KHM. Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant. 2017;39(4).
- Wang Y, Qiu L, Song Q, Wang S, Wang Y, Ge Y. Root proteomics reveals the effects ofwood vinegar on wheat growth and subsequent tolerance to drought stress. Int J Mol Sci. 2019;20(4):1–23.
- Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem (Internet). 2017;118(December):138–49. Available from: http://dx.doi.org/10.1016/j.plaphy.2017.06.014
- Zhang G, Zhang M, Zhao Z, Ren Y, Li Q, Wang W. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability. Sci Rep (Internet). 2017;7(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-017-08181-w
- Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant. 2017;161(4):502–14.
- El-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M. Overexpression of atWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes (Basel). 2019;10(2).
- Gao H, Wang Y, Xu P, Zhang Z. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci. 2018;9(August):1–10.
ماخذونه
Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem. 2017;5(DEC):1–13.
Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, et al. Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res. 2012;19(2):165–77.
Guo X, Xin Z, Yang T, Ma X, Zhang Y, Wang Z, et al. Metabolomics response for drought stress tolerance in chinese wheat genotypes (Triticum aestivum). Plants. 2020;9(4):1–15.
Anwaar HA, Perveen R, Mansha MZ, Abid M, Sarwar ZM, Aatif HM, et al. Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi J Biol Sci (Internet). 2020;27(7):1818–23. Available from: https://doi.org/10.1016/j.sjbs.2019.12.009
Hasanuzzaman M, Nahar K, Rahman A, Anee TI, Alam MU, Bhuiyan TF, et al. Approaches to Enhance Salt Stress Tolerance in Wheat. Wheat Improv Manag Util. 2017;(September).
Liu C, Sukumaran S, Claverie E, Sansaloni C, Dreisigacker S, Reynolds M. Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Mol Breed. 2019;39(3).
Ma J, Li R, Wang H, Li D, Wang X, Zhang Y, et al. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front Plant Sci. 2017;8(April):1–13.
Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int J Mol Sci. 2019;20(13).
Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M, Siddique KHM. Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant. 2017;39(4).
Wang Y, Qiu L, Song Q, Wang S, Wang Y, Ge Y. Root proteomics reveals the effects ofwood vinegar on wheat growth and subsequent tolerance to drought stress. Int J Mol Sci. 2019;20(4):1–23.
Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem (Internet). 2017;118(December):138–49. Available from: http://dx.doi.org/10.1016/j.plaphy.2017.06.014
Zhang G, Zhang M, Zhao Z, Ren Y, Li Q, Wang W. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability. Sci Rep (Internet). 2017;7(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-017-08181-w
Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant. 2017;161(4):502–14.
El-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M. Overexpression of atWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes (Basel). 2019;10(2).
Gao H, Wang Y, Xu P, Zhang Z. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci. 2018;9(August):1–10.