Main Article Content

Abstract

This article compares harmonic and non-harmonic vibrations theoretically, examining the main differences between the two. Any periodic and repetitive motion around the position of equilibrium is referred to as vibrational motion. In vibrational motion, there is a constant conversion of kinetic energy into potential energy and vice versa. Harmonic vibrations have potential energy given by Ep=12kx2E_p = \frac{1}{2}kx^2Ep​=21​kx2, and their potential energy graph is parabolic. Their frequency is given by ω=Cm\omega = \sqrt{\frac{C}{m}}ω=mC​​, and higher harmonics occur at frequencies of 2ω2\omega2ω, 3ω3\omega3ω, 4ω4\omega4ω, etc. Non-harmonic vibrations, on the other hand, have limits that are linear or nonlinear and exhibit slight deviations from simple harmonic motion. Non-harmonic vibrations are characterized by potential energy that is not parabolic.

Keywords

Frequency Harmonic Kinetic Energy; Non-Harmonic Potential Energy Vibration

Article Details

How to Cite
Sadid, R. (2025). Comparison of Harmonic and Non-Harmonic Vibrations . Journal of Natural Sciences – Kabul University, 4(1), 195–207. https://doi.org/10.62810/jns.v4i1.193

References

  1. احدیار، فریبا. فزیک میخانیک. ا نتشرات سعید،۱۳۹۲، صص ۱۵۹-۱۶۶.
  2. ستانیزی، عبدالظاهر و احدیار، فریبا. میخانیک کلاسیک. کابل. نشرات بوهنتون: ۱۳۸۷ صص۲۰۰-۱۸۲.
  3. ستانیزی، عبدالظاهر و احدیار، فریبا. فزیک عمومی. کابل. نشرات بوهنتون. ۱۳۸۷: صص۱۶۷-۱۹۲.
  4. Nayak, Abhigit. Engineering Physics. 2006. Third Edition. Published by S K. Kataria and Sons Delhi India: pp55-78.
  5. Cutnel, John, D. and Jonson, K. W. Physics. 2004. Sixth Edition. John Wiley and Sons Inc: pp267-270.
  6. Kleppner, Daniel. And Kolenkow. Robert, An Introduction, 2009: pp410-414.
  7. Kakani , S. L. Hemrajani, C. and Kakani, Shubhra, Mechanics, Viva, p Books Private Limited New Delhi , India, 2009:pp 410-460.
  8. Kakani , S. L. Hemrajani, C. Waves and Osillations New Delhi, 2002: pp144-288.