د مقالې اصلي محتوا

خلاصه

 خوردگی با این که سبب کاهش ناچیز کتله در ساختارهای انجنیری می‌گردد اما باعث تقلیل چشم‌گیر در مقاومت مکانیکی و عمر مواد خورده‌شده می­شود. بنابراین، حفظ سلامتی یک ساختار که در یک محیط خورنده قرار دارد، می‌تواند وضعیت ساختار در هر زمان را نشان داده و سبب جلوگیری از لطمات وارده و هزینه­های ناشی از آن شود. هدف از این پژوهش، بررسی توانایی روش امپدانس الکترومکانیکی در تشخیص خوردگی می‌باشد و با استفاده از پیزوالکتریک به بررسی ابعاد عیب‌ها بر روی یک تیر یک سر بسته پرداخته شده است. جهت تشخیص کمی عیب به صورت سنتی، از معیار آسیب اسکالر استفاده شده است. با توجه به نمودارهای بدست‌آمده در بحث تحلیلی و تجربی، به وضوح دیده می‌شود که پیزوالکتریک در هر دو بحث قادر به تشخیص ابعاد عیب‌ها می‌باشد.

کلیدي ټکي

خوردگی فلزات محیط خورنده امپدانس الکترومکانیکی حفظ سلا متی ساختار

د مقالې جزئیات

څنګه استناد وکړو
نعیم زاد م. ع. (2020). بررسی چگونگی خوردگی در تیر یک سر بسته. د کابل پوهنتون د طبیعي علومو علمي ــ څېړنیزه مجله , 3(2), 25–36. https://doi.org/10.62810/jns.v3i2.154
د ارجاع داونلوډ
Endnote/Zotero/Mendeley (RIS)
BibTeX

ماخذونه

  1. Sun, F., Chaudhry, Z., Liang, C., and Rogers, C.A. “Truss Structure Integrity Identification Using PZT Sensor-Actuator,” Journal of Intelligent Material Systems and Structure, V.6, 1995; PP 134-139
  2. Giurgiutiu, V. "Structural Health Monitoring with Piezoelectric Wafer Active Sensors", Academic Press, Burlington, MA. 2008.
  3. Simmers Jr., G.E. „Impedance-based structural health monitoring to detect corrosion‟, Meter’s Thesis, Center for. 2005.
  4. Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University.
  5. Liang, C., Sun, F. P., and Rogers, C.A. “Coupled Electromechanical Analysis of Adaptive Material System – Determination of Actuator Power Consumption and System Energy Transfer,” Journal of Intelligent Material Systems and Structures. V.5. 1998; pp. 21-20.
  6. Park, G., Sohn, H., Farrar, C., Inman, D. “Overview of Piezoelectric Impedance- Based Health Monitoring and Path. 2003.
  7. Forward,” Shock and Vibration Digest, Vol. 35, No. 6, November 2003, pp. 451-463.
  8. Odegard GM, Gates TS, Nicholson LM, Wise KE. Equivalent continuum modeling of Nano-structured materials. Compos Sci Technol ;62: 2002; Pp1869–80.
  9. Liu YJ, Chen XL. Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale. 2003.
  10. representative volume element. Mech Mater;35: 2003; 69–81.
  11. Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ. Constitutive modeling of nanotube-reinforced polymer composites. Compos.
  12. Sci Technol 2003;63:1671–87.
  13. Odegard GM, Pipes RB, Hubert P. Comparison of two models of SWCN polymer composites. Compos Sci Technol;64: 2004; 1011–20.
  14. Tserpes KI, Papnikos P. Finite element modelling of single-walled carbon nanotubes. Composites: Part B; 36: 2005; 468–77.
  15. Buryachenko VA, Roy A. Effective elastic moduli of nanocomposites with prescribed random orientation of nanofibers. 2005.
  16. Composites: Part B;36:405–16.
  17. Xiao JR, Gama BA, Gillespie Jr JW. An analytical molecular structural mechanics model for the mechanical properties of. 2005.
  18. carbon nanotubes. Int J Solids Struct ;42:3075–92.