Main Article Content
Abstract
As the global population continues to grow, securing food resources has become increasingly critical, particularly in regions facing water scarcity, energy shortages, and limited arable land. Traditional farming methods are no longer sufficient to meet these demands. Consequently, the integration of information technology and the Internet of Things (IoT) has gained significant attention in modern agriculture. IoT technology enables farmers to access real-time, reliable data on critical factors such as seed quality, soil moisture, and soil pH, enhancing agricultural efficiency and productivity. This study, conducted using a review-based approach, highlights the crucial role of IoT in smart farming. However, despite its advantages, smart farming in Afghanistan faces several challenges, including the need for a stable internet infrastructure and expertise in data analysis. To overcome these obstacles, the Ministry of Agriculture, agricultural institutions, and other relevant organizations should implement awareness programs and educational seminars to promote the adoption of smart farming technologies.
Keywords
Article Details
Copyright (c) 1403 Reserved for Kabul University

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Adewusi, A. O., Chiekezie, N. R., & Eyo-Udo, N. L. (2022). Securing smart agriculture: Cybersecurity challenges and solutions in IoT-driven farms. World Journal of Advanced Research and Reviews, 15(3), 480–489. https://doi.org/10.30574/wjarr.2022.15.3.0887
- AlZubi, A. A., & Galyna, K. (2023). Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access, 11, 82951–82967. https://doi.org/10.1109/ACCESS.2023.3298215
- Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E.-H. M. (2019). Internet-of-things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
- Boddu, R. D., Ragam, P., Pendhota, S. P., Goni, M., Indrala, S., & Badavath, U. R. (2023). IoT-based smart agricultural monitoring system. In K. S. Raju, A. Govardhan, B. T. Rao, S. N. Mohanty, & S. B. Sriram (Eds.), Proceedings of fourth international conference on computer and communication technologies: IC3T 2022 (pp. 363–372). Springer. https://doi.org/10.1007/978-981-19-8563-8_36
- Company, T. B. R. (2023, July). IoT in agriculture global market. The Business Research Company. https://www.thebusinessresearchcompany.com/report/internet-of-things-iot-in-agriculture-global-market-report
- Dahane, A., Benameur, R., & Kechar, B. (2022). An IoT low-cost smart farming for enhancing irrigation efficiency of smallholders farmers. Wireless Personal Communications, 127(4), 3173–3210. https://doi.org/10.1007/s11277-022-09915-4
- Devare, J., & Hajare, N. (2019). A survey on IoT based agricultural crop growth monitoring and quality control. In 2019 International conference on communication and electronics systems (ICCES) (pp. 682–686). IEEE. [No DOI provided in original]
- Et-taibi, B., Abid, M. R., Boufounas, E.-M., Morchid, A., Bourhnane, S., Hamed, T. A., & Benhaddou, D. (2024). Enhancing water management in smart agriculture: A cloud and IoT-based smart irrigation system. Results in Engineering, 22, Article 102283. https://doi.org/10.1016/j.rineng.2024.102283
- Khan, A. (2023). Optimizing onion crop management: A smart agriculture framework with IoT sensors and cloud technology. System, 6(1), 1. https://doi.org/10.0009-0002-2232-2855
- Lavanya, G., Rani, C., & GaneshKumar, P. (2020). An automated low cost IoT based fertilizer intimation system for smart agriculture. Sustainable Computing: Informatics and Systems, 28, Article 100300. https://doi.org/10.1016/j.suscom.2019.01.002
- Moghayedi, A., Richter, I., Owoade, F. M., Kapanji-Kakoma, K. K., Kaliyadasa, E., Francis, S., & Ekpo, C. (2022). Effects of urban smart farming on local economy and food production in urban areas in African cities. Sustainability, 14(17), Article 10836. https://doi.org/10.3390/su141710836
- Quy, V. K., Hau, N. V., Anh, D. V., Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-enabled smart agriculture: Architecture, applications, and challenges. Applied Sciences, 12(7), Article 3396. https://doi.org/10.3390/app12073396
- Raihan, A. (2024). A review of recent advances, challenges, and potential future directions of climate-smart agriculture. In Proceedings of the international conference on climate-smart agriculture. [No publisher or page range provided in original]. https://www.researchgate.net/publication/380733452_A_review_of_recent_advances_challenges_and_potential_future_directions_of_climate-smart_agriculture
- Revathi, A., & Poonguzhali, S. (2023). IoT and machine learning algorithm in smart agriculture. In P. Karrupusamy, V. E. Balas, & I. L. Garcia (Eds.), Futuristic communication and network technologies: Select proceedings of VICFCNT 2021, Volume 1 (pp. 373–385). Springer. https://doi.org/10.1007/978-981-19-8338-2_29
- Said Mohamed, E., Belal, A. A., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3, Part 2), 971–981. https://doi.org/10.1016/j.ejrs.2021.08.007
- Talero-Sarmiento, L., Parra-Sanchez, D., & Lamos Diaz, H. (2023). Opportunities and barriers of smart farming adoption by farmers based on a systematic literature review. In Proceedings INNODOCT/22. International conference on innovation, documentation and education. [No publisher or page range provided in original]. https://riunet.upv.es/handle/10251/193110
- United Nations. (2019). Growing at a slower pace, world population is expected to reach 9.7. https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
- Vatambeti, R., Venkatesh, D., Mamidisetti, G., Damera, V. K., Manohar, M., & Yadav, N. S. (2023). Prediction of DDoS attacks in agriculture 4.0 with the help of prairie dog optimization algorithm with IDSNet. Scientific Reports, 13(1), Article 15371. https://doi.org/10.1038/s41598-023-42678-x
- Vimal, S. P., Sathish Kumar, N., Kasiselvanathan, M., & Gurumoorthy, K. B. (2021). Smart irrigation system in agriculture. Journal of Physics: Conference Series, 1917(1), Article 012028. https://doi.org/10.1088/1742-6596/1917/1/012028
- World Bank. (2018). The potential of the agricultural sector can be a boon to Afghanistan's economic growth. https://www.worldbank.org/fa/country/afghanistan/publication/unlocking-potential-of-agriculture-for-afghanistan-growth
- Yang, X., Shu, L., Chen, J., Ferrag, M. A., Wu, J., Nurellari, E., & Huang, K. (2020). A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE/CAA Journal of Automatica Sinica, 8(2), 273–302. https://doi.org/10.1109/JAS.2020.1003536
- Zikria, Y. B., Ali, R., Afzal, M. K., & Kim, S. W. (2021). Next-generation internet of things (IoT): Opportunities, challenges, and solutions. Sensors, 21(4), Article 1174. https://doi.org/10.3390/s21041174
- Zoting, S. (2024). Internet of things (IoT) in agriculture market size, share, and trends 2024 to 2034. Precedence Research. https://www.precedenceresearch.com/iot-in-agriculture-market
References
Adewusi, A. O., Chiekezie, N. R., & Eyo-Udo, N. L. (2022). Securing smart agriculture: Cybersecurity challenges and solutions in IoT-driven farms. World Journal of Advanced Research and Reviews, 15(3), 480–489. https://doi.org/10.30574/wjarr.2022.15.3.0887
AlZubi, A. A., & Galyna, K. (2023). Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access, 11, 82951–82967. https://doi.org/10.1109/ACCESS.2023.3298215
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E.-H. M. (2019). Internet-of-things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
Boddu, R. D., Ragam, P., Pendhota, S. P., Goni, M., Indrala, S., & Badavath, U. R. (2023). IoT-based smart agricultural monitoring system. In K. S. Raju, A. Govardhan, B. T. Rao, S. N. Mohanty, & S. B. Sriram (Eds.), Proceedings of fourth international conference on computer and communication technologies: IC3T 2022 (pp. 363–372). Springer. https://doi.org/10.1007/978-981-19-8563-8_36
Company, T. B. R. (2023, July). IoT in agriculture global market. The Business Research Company. https://www.thebusinessresearchcompany.com/report/internet-of-things-iot-in-agriculture-global-market-report
Dahane, A., Benameur, R., & Kechar, B. (2022). An IoT low-cost smart farming for enhancing irrigation efficiency of smallholders farmers. Wireless Personal Communications, 127(4), 3173–3210. https://doi.org/10.1007/s11277-022-09915-4
Devare, J., & Hajare, N. (2019). A survey on IoT based agricultural crop growth monitoring and quality control. In 2019 International conference on communication and electronics systems (ICCES) (pp. 682–686). IEEE. [No DOI provided in original]
Et-taibi, B., Abid, M. R., Boufounas, E.-M., Morchid, A., Bourhnane, S., Hamed, T. A., & Benhaddou, D. (2024). Enhancing water management in smart agriculture: A cloud and IoT-based smart irrigation system. Results in Engineering, 22, Article 102283. https://doi.org/10.1016/j.rineng.2024.102283
Khan, A. (2023). Optimizing onion crop management: A smart agriculture framework with IoT sensors and cloud technology. System, 6(1), 1. https://doi.org/10.0009-0002-2232-2855
Lavanya, G., Rani, C., & GaneshKumar, P. (2020). An automated low cost IoT based fertilizer intimation system for smart agriculture. Sustainable Computing: Informatics and Systems, 28, Article 100300. https://doi.org/10.1016/j.suscom.2019.01.002
Moghayedi, A., Richter, I., Owoade, F. M., Kapanji-Kakoma, K. K., Kaliyadasa, E., Francis, S., & Ekpo, C. (2022). Effects of urban smart farming on local economy and food production in urban areas in African cities. Sustainability, 14(17), Article 10836. https://doi.org/10.3390/su141710836
Quy, V. K., Hau, N. V., Anh, D. V., Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-enabled smart agriculture: Architecture, applications, and challenges. Applied Sciences, 12(7), Article 3396. https://doi.org/10.3390/app12073396
Raihan, A. (2024). A review of recent advances, challenges, and potential future directions of climate-smart agriculture. In Proceedings of the international conference on climate-smart agriculture. [No publisher or page range provided in original]. https://www.researchgate.net/publication/380733452_A_review_of_recent_advances_challenges_and_potential_future_directions_of_climate-smart_agriculture
Revathi, A., & Poonguzhali, S. (2023). IoT and machine learning algorithm in smart agriculture. In P. Karrupusamy, V. E. Balas, & I. L. Garcia (Eds.), Futuristic communication and network technologies: Select proceedings of VICFCNT 2021, Volume 1 (pp. 373–385). Springer. https://doi.org/10.1007/978-981-19-8338-2_29
Said Mohamed, E., Belal, A. A., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3, Part 2), 971–981. https://doi.org/10.1016/j.ejrs.2021.08.007
Talero-Sarmiento, L., Parra-Sanchez, D., & Lamos Diaz, H. (2023). Opportunities and barriers of smart farming adoption by farmers based on a systematic literature review. In Proceedings INNODOCT/22. International conference on innovation, documentation and education. [No publisher or page range provided in original]. https://riunet.upv.es/handle/10251/193110
United Nations. (2019). Growing at a slower pace, world population is expected to reach 9.7. https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
Vatambeti, R., Venkatesh, D., Mamidisetti, G., Damera, V. K., Manohar, M., & Yadav, N. S. (2023). Prediction of DDoS attacks in agriculture 4.0 with the help of prairie dog optimization algorithm with IDSNet. Scientific Reports, 13(1), Article 15371. https://doi.org/10.1038/s41598-023-42678-x
Vimal, S. P., Sathish Kumar, N., Kasiselvanathan, M., & Gurumoorthy, K. B. (2021). Smart irrigation system in agriculture. Journal of Physics: Conference Series, 1917(1), Article 012028. https://doi.org/10.1088/1742-6596/1917/1/012028
World Bank. (2018). The potential of the agricultural sector can be a boon to Afghanistan's economic growth. https://www.worldbank.org/fa/country/afghanistan/publication/unlocking-potential-of-agriculture-for-afghanistan-growth
Yang, X., Shu, L., Chen, J., Ferrag, M. A., Wu, J., Nurellari, E., & Huang, K. (2020). A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE/CAA Journal of Automatica Sinica, 8(2), 273–302. https://doi.org/10.1109/JAS.2020.1003536
Zikria, Y. B., Ali, R., Afzal, M. K., & Kim, S. W. (2021). Next-generation internet of things (IoT): Opportunities, challenges, and solutions. Sensors, 21(4), Article 1174. https://doi.org/10.3390/s21041174
Zoting, S. (2024). Internet of things (IoT) in agriculture market size, share, and trends 2024 to 2034. Precedence Research. https://www.precedenceresearch.com/iot-in-agriculture-market