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  چکیده
وع کاپوتو برای حل معادلات دیفرانسیل خطی با مشهق کسی ن کنند تص ی –بینیپیشدر این مقاله، دقت روش عددی 

که دارای هاییسازی پدید شان در مدلناییخاطر توااست. مشهقات کسی به تعریف کاپوتو به مورد بررسی قرار گرفهه

مؤثریت و دف این ت قیق، بررسی های فزیکی و انجنیری اهمیت خاصی دارند. هاند، در سیسهمحافظه و وابسهگی زمانی

باشد. برای این منظور، نخست ساخهار در حل معادلات دیفرانسیل کسی خطی میکنند  تص یح–بینیدقت روش پیش

مهجانس به کار گرفهه شد  غیر این روش عددی معرفی شد  و سپس در حل چندین مثال عددی شامل معادلات مهجانس و 

ه یی جهت ارزیابی دقت روش ارایهای مقایسهها و گرافد  و جدولل ت لیلی مقایسه گردیآمد  با حدستاست. نهایج به

توان آن را به عنوان یک از دقت خوبی برخوردار بود  و میکنند  تص ی –بینیکه روش پیش داد نها نشااند. یافههشد 

 .کلاسیک در نظر گرفت یروش مؤثر برای حل عددی معادلات دیفرانسیل کسی با شرایط اولیه

 کنند تص یح–بینیپیش روش ؛مشهق کاپوتو ؛دیفرانسیل کسی معادلات ؛تقریب عددی ؛تبدیل لاپلاسکلیدی:  هایواژه
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Abstract 

This paper investigates the accuracy of the Predictor–Corrector numerical method for solving linear 

differential equations with Caputo-type fractional derivatives. Fractional derivatives defined in the 

sense of Caputo are particularly important due to their ability to model memory and time-dependent 

behaviors in physical and engineering systems. The aim of this study is to evaluate the efficiency 

and accuracy of the Predictor–Corrector method in solving linear fractional differential equations. 

To achieve this, the structure of the method is first introduced, and then it is applied to several 

numerical examples, including both homogeneous and nonhomogeneous equations. The numerical 

results are compared with analytical solutions, and tables and comparative graphs are presented to 

assess the method's accuracy. The findings indicate that the Predictor–Corrector method provides 

reliable and accurate results and can be considered an effective approach for numerically solving 

linear fractional differential equations with classical initial conditions. 
Keywords: Caputo Derivative; Fractional Differential Equations; Laplace Transform; Numerical 

Approximation; Predictor-Corrector Method 
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 مقدمه

 .نیاجمع اص ابه و آله یعل و نیالمرسل دیس یعل السلام و الصلوة و نیالعالم رب لله ال مد

 توجه اخیر هایسال در ،معمولی دیفرانسیل معادلات از تعمیمی عنوانبه کسی دیفرانسیل معادلات

 هایمشهق که معادلات این اند.کرد  جلب خود به انجینری و ساینس مخهلف هایزمینه در را فراوانی

 به اثرات و حافظه هاآن در که را انجینری و طبیعی پیچید  هایپروسه قادرند شوند،می شامل را کسی

 مخهلف تعاریف میان در .),Podlubny 1999( کنند سازیمدل بیشتری دقت با دارد، اهمیت گذشهه

 به تر،فهم قابل لیهاو  شرایط و مناسب فزیکی هایویژگی دلیل به و 1وکاپوت کسی مشهق کسی، مشهق

 ).,al., et Kilbas ;1967 Caputo 2006( رودمی کار به تطبیقی لیمسا در ییگسترد  طور

 بنابراین، است؛ غیرممکن حهی یا دشوار موارد بسیاری در کسی دیفرانسیل معادلات ت لیلی حل

 .),Diethelm 2010( اندیافهه ییویژه جایگا  معادلات این سازیشبیه و ت لیل در عددی هایروش

 پیچیدگی و دقت میان مناسب تعادل علت به کنند تص یح-بینیپیش عددی روش میان، این در

 این  .),Deng 2007(باشندمی کسی معادلات حل برای عددی هایشرو  ترینم بوب از م اسباتی،

 معادلات حل در اندتوانسهه و بود  کسی مشهق گسسهه هایتقریب و هافرمول بر مبهنی معمولاً هاروش

 .)al., et Diethelm 2002( کنند کسب چشمگیری هایموفقیت غیرخطی و خطی کسی دیفرانسیل

 زیرا ؛دارد فراوانی اهمیت کسی فرانسیلدی معادلات حل در عددی هایروش پایداری و دقت

 سازند اعهماد غیرقابل را نهایی نهایج و یافهه افزایش سرعت به است ممکن عددی خطاهای

 )2015 Zeng, & Li(. از ناشی خطاهای ت لیل و کنند تص یح-بینیپیش روش بررسی راین،بناب 

 رودمی شمار به عددی هایالگوریهم بهبود و توسعه برای حیاتی موضوعی سازی،گسسهه

 )2018 al., et Zeng(. ،حفظ منظور به کنند تص یح و بینیپیش هایفرمول در تغییراتی همچنین 

 .),Garrappa 2010( است شد  اعمال م اسباتی کارایی افزایش و دقت

 به غیرخطی، معادلات به نسبت ترساد  ریاضی ساخهار علت به کسی، خطی دیفرانسیل معادلات

 این در .),Podlubny 1999( شوندمی اسهفاد  عددی هایروش ارزیابی برای اساسی هایمدل عنوان

 ایفا هاسیسهم رفهار بر مدتطولانی حافظه اثرات نمایش در مهمی نقش کاپوتو کسی مشهق معادلات،

 معادلات بر کنند تص یح-بینیپیش روش عملکرد دقیق بررسی رو،این از .),Mainardi 2010( کندمی

                                                           
1 Caputo fractional derivative 
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 کاربردهای توسعه و عددی هایروش بهبود برای مناسب یزمینه کاپوتو، نوع کسی خطی سیلدیفران

  .)al., et Li 2019( است هاآن عملی

 هایروش دقت م اسباتی، و ریاضی مخهلف هایتکنیک کارگیریبه با شد  تلاش اخیر، ت قیقات در

.)Sousa ;2013 Karniadakis, & Zayernouri, 2016( شوند بهینه عددی پارامترهای و یافهه افزایش عددی

 تردقیق بینیپیش برای مکمل عنوان به ماشین یادگیری و عصبی هایشبکه بر مبهنی هایروش همچنین،

 کنند تص یح-بینیپیش روش وجود، این با  .)al., et Liu 2021(اند رفهه کار به کسی معادلات پاسخ

 شوندمی شناخهه حوز  این در اعهماد قابل و کلاسیک شرو  عنوان به همچنان

 )1999 Freed, & Diethelm(. 

 دیفرانسیل معادلات حل در کنند تص یح-بینیپیش روش دقت دقیق رسیبر  مقاله، این اصلی هدف

 هایروش با مقایسه و روش پایداری ارزیابی خطاها، ت لیل با است. کاپوتو نوع کسی مرتبه خطی

 مطالعه این آید. دست به روش این هایم دودیت و مزایا از بهتری درک تا شودمی تلاش مشابه،

 .کند کمک تطبیقی علوم و کفزی ،انجینری در کسی معادلات کاربرد گسترش به تواندمی

 معادلات حل در پایدارتر و تردقیق تر،سریع هایالگوریهم توسعه به تواندمی ت قیق این نهایت، در

 اهمیت به توجه با باشد. حوز  این در آیند  مطالعات برای ایپایه و نمود  کمک کسی دیفرانسیل

 نقش عددی هایروش دقیق ارزیابی واقعی، هایپروسه سازیمدل در کسی معادلات روزافزون

 .کندمی ایفا دانش این پیشرفت در کلیدی

 مفاهیم تعریف

 تابع گاما

𝑥تابع → 𝛤(𝑥)  تعریف شد  توسط ،𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
 شود.تابع گاما نامید  می 

 :گردید ه یاراخصوصیات تابع گاما طور زیر  ترینمهم. خواص تابع گاما
  

•   Γ(x + 1) = xΓ(x), x > 0 

•   Γ(n + 1) = n! ,     n ∈ ℕ 

•   Γ(x) =
Γ(x + 1)

x
, x < 0,   x ∉ ℤ 

• Γ (
1

2
) = √π 
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 لفلر-تابع میتاگ

 1903که آن را در سال  یدنیلفلر یک تابع خاص است که به نام یک ریاضیدان سو-تابع میهاگ 

این یک تعمیم مسهقیم از تابع  . (Kimeu, 2009) نامگذاری شد  است،  تعریف و مطالعه کرد

بر حسب   لفلر-میهاګدیفرانسیل کسی مهم است. تابع  معادلاتوری یاست. این تابع در ت 𝑒𝑥نمایی

 زیر ارایه گردید  اند. یک سلسله طاقت به صورت

𝐸𝛼(𝑥) = ∑
𝑥𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

      ،𝛼 > 0 

𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

    ،𝛼 > 0, 𝛽 > 0 

 .نامید  می شوند 2لفلر-میهاگ از نوعروابطه بالا به ترتیب تابع یک پارامتری و دو پارامتری 

 مشتق کسری کاپوتو

𝑓:ℝاگر → ℝ  کاپوتو از مرتبه  کسیباشد. مشهق  مهمادییک تابع𝛼  یک تابع𝑓(𝑥) عبارت اند از: 

𝐷𝛼𝑓(𝑥) =

{
 
 

 
 1

𝛤(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝑡)

(𝑥 − 𝑡)𝛼−𝑛+1

𝑥

0

𝑑𝑡, 𝑛 − 1 ≤ 𝛼 < 𝑛

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥)                                                𝛼 = 𝑛 ∈ ℕ

 

(Ishteva, 2005) 
ترین خواص مشهق کسی کاپوتو قرار ذیل است:مهم. مشتق کسری کاپوتوخواص   

1.   𝐷𝛼𝑓(𝑥) = 𝐷−(𝑛−𝛼)[𝐷𝑛𝑓(𝑥)]               
2.  𝐷𝛼(𝜆𝑓(𝑥) + 𝑔(𝑥)) = 𝜆𝐷𝛼𝑓(𝑥) + 𝐷𝛼𝑔(𝑥)    

3. 𝑙𝑖𝑚
𝛼→𝑛−1

𝐷𝛼𝑓(𝑥) = 𝑓(𝑛−1)(𝑥) − 𝑓(𝑛−1)(0)  و 𝑙𝑖𝑚
𝛼→𝑛

𝐷𝛼𝑓(𝑥) = 𝑓(𝑛)(𝑥) 

4.  𝐷𝛼𝐷𝑚𝑓(𝑥) = 𝐷𝛼+𝑚𝑓(𝑥) ≠ 𝐷𝑚𝐷𝛼𝑓(𝑥)                        

 تبدیل لاپلاس 

 به صورت زیر تعریف می شود: 𝑦(𝑡)تبدیل لاپلاس تابع

                                         ℒ{𝑦(𝑡)} = 𝑌(𝑠) = ∫ 𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡,
∞

0
 

                                                           
 ۳Mittag-Leffler 
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𝑦(𝑡) چنینهم = ℒ−1{𝑌(𝑠)}  یکها و معکوس ترانسفورم لاپلاس𝑌(𝑠)  است.  تبدیل لاپلاس یک

 وجود داشهه باشند در این صورت: ℒ{𝑔(𝑡)}و  ℒ{𝑓(𝑡)}پراتور خطی است. به طور خاص، اگر وا

1) ℒ{𝑓(𝑡) + 𝑔(𝑡)} = ℒ{𝑓(𝑡)} + ℒ{𝑔(𝑡)} 

2) ℒ{𝑐𝑓(𝑡)} = 𝑐ℒ{𝑓(𝑡)} 

𝜇 برای هرین چنهم > −1, 𝑎 ∈ ℝ: 

3) ℒ{𝑡𝜇} =
𝛤(𝜇 + 1)

𝑠𝜇+1
 

4) ℒ{𝑒𝑎𝑡} =
1

𝑠 − 𝑎
 

کند یافت می شود. این قضیه بیان می قضیه کانولوشنیکی از مفیدترین خصوصیات تبدیل لاپلاس در 

 𝐺(𝑠)و 𝐹(𝑠)ها است. بنابراین، اگر که تبدیل لاپلاس از کانولوشن دو تابع حاصل تبدیل لاپلاس آن

 آنگا  :، باشد 𝑔(𝑡)و  𝑓(𝑡)به ترتیب تبدیل لاپلاس توابع 

𝑓 ∗ 𝑔 = 𝐹(𝑠)𝐺(𝑠)  

                                              𝑓 ∗ 𝑔 = ℒ{∫ 𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢}
𝑡

0
 

 تبدیل لاپلاس مشتق کسری 

 توسط    𝑦(𝑛)به یاد داریم که در عملیات مرتبه  تام ، تبدیل لاپلاس 

                      ℒ{𝑦(𝑛)} = 𝑠𝑛𝑌(𝑠) − 𝑠𝑛−1𝑦(0) − 𝑠𝑛−2𝑦 ′(0) − ⋯− 𝑦(𝑛−1)(0) 

                = 𝑠𝑛𝑌(𝑠) − ∑ 𝑠𝑛−𝑘−1𝑦(𝑘)(0)𝑛−1
𝑘=0  

 عبارت  است از 𝑦(𝑡)تابع 𝛼همچنین می دانیم که مشهق کسی مرتبهبیان می شود. 

           𝐷𝛼𝑦(𝑡) = 𝐷𝑛[𝐷−𝑢𝑦(𝑡)] 

𝛼کوچکترین عدد تام بزرگتر از صفر و   که  در حالی > 𝑢و  0 = 𝑛 − 𝛼  می توانیم   .است

 بنویسیم 

 𝐷𝛼𝑦(𝑡) = 𝐷𝑛[𝐷−(𝑛−𝛼)𝑦(𝑡)] 

 ، بنابر این: کنیم که تبدیل لاپلاس وجود دارد حال ، فرض

ℒ{𝐷𝛼𝑦(𝑡)} = 𝑠𝛼𝑌(𝑠) − ∑ 𝑠𝑛−𝑘−1𝐷𝑘
−𝑛+𝛼

𝑦(0)𝑛−1
𝑘=0  

𝑛به طور خاص، اگر  = 𝑛و  1 =  به ترتیب داریم باشد، پس  2

 ℒ{𝐷𝛼𝑦(𝑡)} = 𝑠𝛼𝑌(𝑠) − 𝐷−(1−𝛼)𝑦(0),      0 < 𝛼 ≤ 1 
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 و 

       ℒ{𝐷𝛼𝑦(𝑡)} = 𝑠𝛼𝑌(𝑠) − 𝑠𝐷−(2−𝛼)𝑦(0) − 𝐷−(1−𝛼)𝑦(0).     1 < 𝛼 ≤ 2 

 

 کاپوتو کسری مشتق لاپلاس تبدیل

 : ازتبدیل لاپلاس مشهق کسی کاپوتو عبارت است 

ℒ{𝐷∗
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) −∑𝑠𝛼−𝑘−1𝑓(𝑘)(0)

𝑛−1

𝑘=0

 

 روش تحقیق

از طریق حل معادله دیفرانسیل خطی ها عددی است. دیها این مطالعه از نوع کمی و مبهنی بر روش

اند. واحد تولید شد  Octave افزارمرتبه کسی از نوع کاپوتو با اسهفاد  از حل دقیق م اسبه شد  و با نرم

ت لیل این ت قیق شامل حل ت لیلی معادله با اسهفاد  از تبدیل لاپلاس و حل عددی آن با روش 

های مخهلف وری دیهاها، حل عددی معادله با انداز  گامباشد. برای گردآ کنند  میتص یح-بینیپیش

 .م اسبه شد  و با نهایج حل ت لیلی مقایسه گردید  است تا دقت روش عددی ارزیابی شود

صورت هدفمند و مبهنی بر انهخاب معادلات مهجانس و غیرمهجانس از نوع کاپوتو گیری بهروش نمونه

کنند ، معادلات مخهلفی انهخاب تص یح-بینیعددی پیش انجام شد  است. برای ت لیل پایداری روش

راج گردد. تری از عملکرد روش در حل معادلات دیفرانسیل کسی اسهخهای دقیقاند تا ویژگیگردید 

ی میان نهایج عددی حاصل از این روش و نهایج دقیق ت لیلی صورت گرفهه است یدر این راسها، مقایسه

 .ادلات دیفرانسیل مرتبه کسی کاپوتو ت لیل شودتا میزان دقت روش در حل مع

های خاص در این ت قیق ابهدا معادلات دیفرانسیل خطی مرتبه کسی از نوع کاپوتو با توجه به ویژگی

کنند  اسهفاد  تص یح-بینیاند. سپس برای حل عددی این معادلات از روش پیشها انهخاب شد آن

های مخهلف تر از دقت بالاتری برخوردار است. انهخاب انداز  گام ویژه در موارد پیچیدشد  است که به

 سازی شود. کند تا دقت نهایج عددی بررسی و بهینهدر این روش کمک می

جایی های عددی پرداخهه شد  است. از آنهمچنین، در این مطالعه به ت لیل پایداری و دقت روش

ها و انهخاب پارامترهای مخهلف قرار دارند، مهای عددی معمولاً ت ت تأثیر انداز  گاکه روش

ها انجام شد  است. برای این ای در زمینه پایداری و خطاهای مربوط به این روشهای گسترد ت لیل

های مخهلف برای بررسی پایداری عنوان نمونهمنظور، معادلات دیفرانسیل کاپوتو با رفهارهای مخهلف به

 .اندانهخاب شد 
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 هایافته
در  ینانیاطمعملکرد قابل کنند حیتص –ینیبشیپ یکه روش عدد دهندینشان م قیت ق نیا یهاهافهی

روش  نیا یر یکارگحاصل از به جینوع کاپوتو دارد. نها یبا مشهق کس  یخط لیفرانسیحل معادلات د

که  تآن اس انگریب رمهجانس،یاعم از معادلات مهجانس و غ ،یعدد یهااز مثال یادر مجموعه

خطاها در  یسهیدارند. مقا یلیت ل یهابا پاسخ یخوب اریآمد  تطابق بسدستبه یعدد یهابیتقر

طور کوچک به یزمان یهاروش در گام یکه خطا دهدیشد  نشان مارائه یها و نمودارهاجدول

 ژهیوبه وشمشاهد  شد که ر  نی. همچنکندیرا دنبال م یمناسب تقاربو روند  ابدییکاهش م یم سوس

 جینها ،یطور کلبرخوردار است. به یمطلوب یعدد یدار یاز پا کیکلاس یهیاول طیبا شرا یدر مسائل

 یو کارآمد برا قیدق یعنوان روشبه تواندیم کنند حیتص –ینیبشیکه روش پ کنندیم دییحاصل تأ

 .ردیگ اربر مشهق کاپوتو مورد اسهفاد  قر  یمبهن یکس  لیفرانسیمعادلات د یحل عدد

 معادلات دیفرانسیل مرتبه کسری خطی

ذیل  ی به شکلیهجانس خطی با ضرایب ثابت معادلهیک معادله دیفرانسیل کسی متعریف. 

 باشد:می

𝐷𝛼𝑚𝑦(𝑡) + 𝑏1𝐷
𝛼𝑚−1𝑦(𝑡) + 𝑏2𝐷

𝛼𝑚−2𝑦(𝑡) + ⋯+ 𝑏𝑚𝐷
𝛼0𝑦(𝑡) = 0, 

است طوری که 
i

  اعداد حقیقی با𝛼0 < 𝛼1 < 𝛼2 < . . . < 𝛼𝑚−1 < 𝛼𝑚  و𝑏𝑖ثابت ها 

 .(Kilbas,2006) هسهند

 مقایسه پاسخ عددی و تحلیلی در حل معادلات دیفرانسیل کسری 

های عددی، مقایسه بین پاسخ عددی و ت لیلی )در صورت موجود بودن( یکی در بررسی دقت روش

کسی نوع کاپوتو، در برخی موارد  ترین ابزارهای ارزیابی است. برای معادلات دیفرانسیلاز مهم

با اسهفاد  از تبدیل لاپلاس یا  (closed-form) صورت بسههتوان پاسخ دقیق )ت لیلی( را بهخاص، می

 .دست آوردلفلر( به–توابع خاص )مانند تابع میهاگ

ر و پاسخ ت لیلی، معمولاً د کنند تص ی  -بینیپیش آمد  از روشدستمقایسه بین پاسخ عددی به

و  مانند خطای نسبی، خطای مطلق ؛معیارهایی .شودی تطبیقی انجام میهاگرافقالب جدول و یا 

 .شوندتفاضل پاسخ عددی و ت لیلی برای این مقایسه اسهفاد  می گراف

دهند  دقت و ص ت روش عددی است. تر باشد، نشانهر چه پاسخ عددی به پاسخ ت لیلی نزدیک

 .کندانهخاب مناسب گام زمانی و ارزیابی پایداری کمک میاین مقایسه همچنین به 
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 مرتبه کسری به کمک تبدیل لاپلاسخطی حل معادلات دیفرانسل 

 .است ثرؤ های ت لیلی مسی خطی یکی از روشتبدیل لاپلاس برای حل معادلات دیفرانسیل مرتبه ک

توانیم در حل معادلات دیفرانسیل مرتبه کسی از تبدیل لاپلاس اسهفاد  کنیم. در این روش می ،اینبنابر 

و بعد از تطبیق   را اعمال معادله را به فرم معیاری آن می نویسیم و در هر دوطرف معادله تبدیل لاپلاس

 𝑌(𝑠)ل معکوس کنیم و با اسهفاد  از جدو حل می 𝑌(𝑠)دست آمد  را از جنس ه شرایط اولیه رابطه ب

آید. در بسیاری از موارد ممکن است جواب دست میه را دریافت نمود  که در نهیجه حل معادله ب

از ابزارهای مهم در ت لیل  این تبدیل یکی لفلر ارائه گردد.-نهایی از جنس تابع خاص میهاگ

با تبدیل مشهقات کسی به روابط الجبری عملیات حل معادله را  که باشدهای دینامیکی میسیسهم

 گی مهم تبدیل لاپلاس برای مشهق کاپوتو از مرتبه الفا به شکل زیر است:سازد. ویژ تسهیل می

ℒ{𝐷𝛼𝑦(𝑡)} = 𝑠𝛼𝑌(𝑠) −∑𝑠𝛼−𝑘−1𝑦(𝑘)(0)

𝑛−1

𝑘=0

 

ی که شکل عمومی طور حال با در نظرداشت تعریف فوق به حل معادله دیفرانسیل خطی مرتبه کس 

 :پردازیمذیل است می

𝐷𝛼𝑚𝑦(𝑡) + 𝑏1𝐷
𝛼𝑚−1𝑦(𝑡) + 𝑏2𝐷

𝛼𝑚−2𝑦(𝑡) + ⋯+ 𝑏𝑚𝐷
𝛼0𝑦(𝑡) = ℎ(𝑡) 

 .کنیمتبدیل لاپلاس را به هر دو طرف معادله اعمال می

ℒ{𝐷𝛼𝑚𝑦(𝑡) + 𝑏1𝐷
𝛼𝑚−1𝑦(𝑡) + 𝑏2𝐷

𝛼𝑚−2𝑦(𝑡) + ⋯+ 𝑏𝑚𝐷
𝛼0𝑦(𝑡)}

= ℒ{ℎ(𝑡)} 

ℒ{𝐷𝛼𝑚𝑦(𝑡)} + 𝑏1ℒ{𝐷
𝛼𝑚−1𝑦(𝑡)} + 𝑏2ℒ{𝐷

𝛼𝑚−2𝑦(𝑡)} + ⋯

+ 𝑏𝑚ℒ{𝐷
𝛼0𝑦(𝑡)} = ℒ{ℎ(𝑡)} 

 :دست می آوریم کهه در نهیجه با اعمال تبدیل لاپلاس ب

(𝑠𝑎𝑚 + 𝑏1𝑠
𝑎𝑚−1 + 𝑏2𝑠

𝑎𝑚−2 +⋯+ 𝑏𝑚𝑠
𝑎0)𝑌(𝑠) = 𝐹(𝑠) 

𝑌(𝑠) =
𝑠𝑎𝑚 + 𝑏1𝑠

𝑎𝑚−1 + 𝑏2𝑠
𝑎𝑚−2 +⋯+ 𝑏𝑚𝑠

𝑎0

𝐹(𝑠)
 

 :ه هر دو طرف رابطه اخیر داریم کهجا با اعمال لاپلاس معکوس باز این

ℒ−1{𝑌(𝑠)} = ℒ−1 {
𝑠𝑎𝑚 + 𝑏1𝑠

𝑎𝑚−1 + 𝑏2𝑠
𝑎𝑚−2 +⋯+ 𝑏𝑚𝑠

𝑎0

𝐹(𝑠)
} 

              𝑦(𝑡) = ℒ−1 {
𝑠𝑎𝑚+𝑏1𝑠

𝑎𝑚−1+𝑏2𝑠
𝑎𝑚−2+⋯+𝑏𝑚𝑠

𝑎0

𝐹(𝑠)
} 

 آید.دست میه حل ت لیلی معادله بمعکوس لاپلاس تبدیل مراجعه به جدول در نهیجه 
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𝐷𝛼𝑦(𝑡)اگر به طور خاص معادله خطی دیفرانسیل مرتبه کسی  + 𝑏𝑦(𝑡) = 𝑓(𝑡)  را که دارای

𝑦(0) ه مشهق کسی کاپوتو بود  و دارای شرط اولی = 𝑦0  است با کمک تبدیل لاپلاس حل کنیم

 :توانیم بنویسیم کهمی

 ℒ{𝐷𝛼𝑦(𝑡)} + 𝑏ℒ{𝑦(𝑡)} = ℒ{𝑓(𝑡)} 

𝑠𝛼𝑌(𝑠) − 𝑠𝛼−1𝑦(0) + 𝑏𝑌(𝑠) = 𝐹(𝑠) 

𝑠𝛼𝑌(𝑠) + 𝑏𝑌(𝑠) = 𝐹(𝑠) + 𝑠𝛼−1 

 :آوریم کهدست میه ب 𝑌(𝑠)نمودن رابطه فوق نسبت به با حل

𝑌(𝑠) =
𝐹(𝑠) + 𝑠𝛼−1

𝑠𝛼 + 𝑏
 

 :حل معادله به شکل زیر خواهد بودتبدیل لاپلاس معکوس  جا با اعمالاز این

𝑦(𝑡) = ℒ−1 {
𝐹(𝑠)

𝑠𝛼 + 𝑏
+

𝑠𝛼−1

𝑠𝛼 + 𝑏
} 

 تقریب عددی انتگرال ولترا

 :شوداست که به صورت کلی زیر تعریف می مه ولبالا  سرحدانهگرال ولترا نوعی انهگرال خطی با 

𝐼(𝑡) = ∫ 𝐾(𝑡, 𝜏)
𝑡

0

𝑓(𝜏)𝑑𝜏 

,𝐾(𝑡که در آن  𝜏) ( و یک کرنل )تابع هسهه𝑓(𝜏) ها در معادلات تابع معلوم است. این نوع انهگرال

ویژه در فرم انهگرالی معادلات با مشهق نوع کاپوتو، نقش کلیدی دارند؛ دیفرانسیل با مشهق کسی، به

 .شوندهای نوع ولترا بازنویسی میشهقات کسی اغلب از طریق انهگرالزیرا م

های ی، قاعد  مسهطیلی، یا فرمولیمانند قاعد  ذوزنقه ؛هاییها، از روشبرای حل عددی این انهگرال

نیز تقریب  کنند تص یح -بینیپیش شود. در روشخاص بر پایه توسعه تیلور یا تابع پایه اسهفاد  می

های اعشاری شود که مبهنی بر تابع گاما و توانعددی انهگرال ولترا با اسهفاد  از ضرایب خاصی انجام می

 .هسهند ℎاز فاصله زمانی 

ددی معادلات ی در دقت کلی حل عیکنند ها، نقش تعیینوع انهگرالتقریب عددی دقیق این ن

 انتروالصورت تجمعی در کل تواند بهاین مرحله میترین خطا در زیرا کوچک ؛دیفرانسیل کسی دارد

در معادلات دیفرانسیل کسی نوع کاپوتو، فرم انهگرالی معادله با اسهفاد  از انهگرال  .زمانی گسترش یابد

 .شودولترا بازنویسی می
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 تبدیل معادله دیفرانسیل کسری به فرم انتگرالی

(0,1) برای معادله دیفرانسیل نوع کاپوتو از مرتبه  

𝐷𝑡
𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(0) = 𝑦0 

 :فرم انهگرالی آن به صورت زیر است

𝑦(𝑡) = 𝑦0 +
1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

0

𝑓(𝜏, 𝑦(𝜏))𝑑𝜏 

,𝐾(𝑡 که دقیقاً یک انهگرال ولترا با کرنل 𝜏) = (𝑡 − 𝜏)𝛼−1است. 

ی هاتوان با روششوار است اما میدر عمل م اسبه ت لیلی  انهگرال فوق در بسیاری موارد کار بسیار د

از   کنند تصتتت یح -بینیپیشهای عددی  روش فوق را م استتتبه نمود از جمله روش عددی انهگرال

 ی موثر برای حل آن است.هاروش

  3الگوریتم 

ثر عددی که برای حل معادلات دیفرانسیل مرتبه کسی نوع کاپوتو پیشنهاد شد  ؤ های میکی از روش

دلیل پایداری، دقت مناسب و سادگی اجرا مورد  است که به کنند تص یح -بینیپیشروش  .است

 گیرد.اسهفاد  قرار می

 معادله دیفرانسیل مرتبه کسی نوع کاپوتو به صورت زیر تعریف می شود:

𝐷𝑡
𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡))        𝑦(0) = 𝑦0            0 < 𝛼 < 1 

له انهگرالی را به معاد، ابهدا معادله آنکنند  تص یح - بینیپیشبرای حل معادله فوق با اسهفاد  از میهود 

لیوویل شکل -. با اسهفاد  از رابطه بین مشهق کسی کاپوتو و انهگرال کسی ریمانمعادل تبدیل می کنیم

 .آیدهگرالی معادله به صورت زیر در میان

𝑦(𝑡) = 𝑦0 +
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

0

𝑓(𝜏, 𝑦(𝜏))𝑑𝜏 

 که م اسبه ت لیلی آن بعضا بسیار دشوار و حهی ناممکن است. ولترا از نوع اول استرابطه فوق معادله 

 کنندهتصحیح-بینیپیش ساختار الگوریتم

 شود:به دو گام اصلی تقسیم می کنند تص یح -بینیپیشالگوریهم 

                                                           
3 Predictor-Corrector 
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  4بینی. گام پیش۱

  5کنند . گام تص یح۲

𝑡𝑗که به شکل   h که با در نظر داشت گام زمان = 𝑗ℎ,     𝑗 = 0,1, . . . , 𝑛  تعریف می شود

 طور زیر بیان می شوند: کنند  تص یحو  بینیپیشی هاگام

 بینی گام پیش

𝑦𝑛+1
𝑝 = 𝑦0 +∑𝑏𝑗,𝑛+1𝑓(𝑡𝑗, 𝑦𝑗)

𝑛

𝑗=0

 

 که 

𝑏𝑗,𝑛+1 =
ℎ𝛼

Γ(𝛼 + 1)
 [(𝑛 + 1 − 𝑗)𝛼 − (𝑛 − 𝑗)𝛼] 

 
  کنندهگام تصحیح

𝑦𝑛+1 = 𝑦0 +∑𝑎𝑗,𝑛+1𝑓(𝑡𝑗, 𝑦𝑗)

𝑛

𝑗=0

+ 𝑎𝑛+1,𝑛+1𝑓(𝑡𝑛+1, 𝑦𝑛+1
𝑝 ) 

   که

𝑎𝑗,𝑛+1 =
ℎ𝛼

Γ(𝛼 + 1)
× 𝐴𝑗,𝑛+1 

 

,که ضرایب  در حالی 1j nA   :به شکل زیر تعریف می شوند 

𝐴𝑗,𝑛+1 = {

𝑛𝛼+1 − (𝑛 − 𝛼)(𝑛 + 1)𝛼,                                             𝑗 = 0       

(𝑛 − 𝑗 + 2)𝛼+1 + (𝑛 − 𝑗)𝛼+1 − 2(𝑛 − 𝑗 + 1)𝛼+1, 1 ≤ 𝑗 ≤ 𝑛
1,                                                                                      𝑗 = 𝑛 + 1

 

 کنندهتصحیح-بینیپایداری روش پیش

های حل عددی معادلات دیفرانسیل ترین معیارها برای ارزیابی روشهمپایداری عددی یکی از م

در سیسهم، بررسی پایداری به مراتب  ی، به دلیل حضور حافظهاست. در مورد معادلات دیفرانسیل کس 

 .است تامتر از معادلات کلاسیک مرتبه پیچید 

                                                           
 ۴  Predictor 

 ۵ corrector  
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برای معادلات کسی نوع کاپوتو، ت ت شرایط خاصی پایدار است. کنند  تص یح -بینیپیش روش

دهند که پایداری این روش به نوع معادله، مقدار مرتبه مشهق کسی مطالعات عددی و نظری نشان می

 چنین گام زمانی و همℎ  بسهگی دارد. اگرℎ بیش از حد بزرگ انهخاب شود، ممکن است نوسانات 

کنند  تص یحچنین به ن و  م اسبه ضرایب پایداری روش هم .در پاسخ عددی مشاهد  شود تباعدیا 

(Corrector Coefficients)   و ن و  تقریب انهگرال ولترا وابسهه است. در عمل، این روش زمانی

 و نیز معادله مورد نظر دارای رفهار م زمانی کوچک و مناسب انهخاب شودپایدار و دقیق است که گا

 .ملایم باشد

 کنندهتصحیح -بینیپیش  بر دقت روش عددی  ℎتأثیر گام زمانی 

       -بینیپیش است. در روش  ℎهای عددی، انداز  گام زمانی یکی از عوامل اصلی در دقت روش

 شودموجب افزایش دقت می ی ، کاهش گام زمانی معمولاًبرای معادلات دیفرانسیل کس کنند  تص یح

(Zabidi et al., 2022). شوند، با تقریب بهتر انجام که در هر مرحله م اسبه میی کس هایزیرا انهگرال

 .گیرندمی

دهد؛ زیرا در مشهقات کسی، تمام مقادیر با این حال، کاهش گام زمانی هزینه م اسباتی را افزایش می

، حجم حافظه  ℎبا کاهش  ،دار بودن(. بنابراینش دارند )ویژگی حافظهقبلی در م اسبه مقدار کنونی نق

 .یابدو تعداد م اسبات نیز به صورت چشمگیری افزایش می

از کنند  تص یح -بینیپیش ، خطای روشدهد که برای مرتبه کسی ت لیل عددی خطا نشان می

برای رسیدن به دقت بالا، لازم است که گام زمانی به انداز  کافی  ،است. بنابراین 𝑂(ℎ2−𝛼)مرتبه 

کوچک باشد. در کاربردهای واقعی، انهخاب گام زمانی مناسب یک تعادل بین دقت مطلوب و هزینه 

 جهت بررسی این موضوع مسایل توضی ی ذیل ارایه شد  اند. .م اسباتی است

 توضیحی مسایل 

𝐷𝑡ی  دیفرانسیل کس معادله ت لیلی حل . ۱مثال

3

4𝑦(𝑡) = 𝑡2 + 3𝑡 − 𝑦(0)با شرط اولیه  1 =

 دریابید.کنند  تص یح -بینیپیش وشر و حل عددی آنرا با  را به کمک تبدیل لاپلاس 1

 :حل

𝐷𝑡

3
4𝑦(𝑡) = 𝑡2 + 3𝑡 − 1        𝑦(0) = 1        𝛼 ∈ (0,1) 

 :کنیمتبدیل لاپلاس هرحد معادله را دریافت می
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ℒ {𝐷𝑡

3
4𝑦(𝑡)} = ℒ{𝑡2} + ℒ{3𝑡} − ℒ{1} 

ℒ{𝐷𝑡با اسهفاد  از 
𝛼𝑦(𝑡)} = 𝑠𝛼𝑌(𝑠) − 𝑠𝛼−1𝑌(𝑠): 

𝑠
3
4𝑌(𝑠) − 𝑠

3
4
−1𝑦(0) =

2

𝑠3
+
3

𝑠2
−
1

𝑠
 

𝑌(𝑠) =
2

𝑠
15
4

+
3

𝑠
11
4

−
1

𝑠
7
4

+
1

𝑠
. 

 :آوریمدست میه را ب 𝑌(𝑠)حال معکوس تبدیل لاپلاس 

ℒ−1{𝑌(𝑠)} = ℒ−1 {
2

𝑠
15
4

+
3

𝑠
11
4

−
1

𝑠
7
4

+
1

𝑠
} 

 آید:دست میه حل معادله طور زیر ب بنا بر این

𝑦(𝑡) = 1 +
2

Γ(3.75)
𝑡2.75 +

3

Γ(2.75)
𝑡1.75 −

1

Γ(1.75)
𝑡0.75 

𝐷𝑡:  حل معادله ۱جدول

3

4𝑦(𝑡) = 𝑡2 + 3𝑡 − 1   ،𝑦(0) =  ℎ ی مخهلفهابا گام  1

t Exact h=0.1 h=0.01 h =0.001 

0.1 0.8404851448 0.7088676789 0.8261509371 0.8390358204 

0.2 0.7915702150 0.6764403115 0.7794475434 0.7903507524 

0.3 0.8022684622 0.6967722501 0.7912946369 0.8011663490 

0.4 0.8643912915 0.7655820661 0.8541708386 0.8633655758 

0.5 0.9747934752 0.8810489767 0.9651237684 0.9738233742 

0.6 1.1321696577 1.0424719903 1.1229290594 1.1312427636 

0.7 1.3361001885 1.2497556861 1.3272082866 1.3352083286 

0.8 1.5866597060 1.5031677790 1.5780597525 1.5857971274 

0.9 1.8842255248 1.8032093376 1.8758755318 1.8833879793 

1.0 2.2293724277 2.1505389419 2.2212401922 .22855666202 
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 ℎی مخهلف هابا گامحل ت لیلی و حل عددی : ۱شکل 

𝐷𝑡. حل  ت لیلی معادله دیفرانسیل ۲مثال
3/5
𝑦(𝑡) + 𝑦(𝑡) = 𝑦(0)با شرط اولیه  0 = به کمک  1

 دریابید. کنند  تص یح -بینیپیش وشر تبدیل لاپلاس و حل عددی آنرا با کمک 

 :حل

𝐷𝑡

3
5𝑦(𝑡) + 𝑦(𝑡) = 0, 𝑦(0) = 1 

ℒ{𝐷𝑡

3
5𝑦(𝑡) + 𝑦(𝑡)} = 0 

𝑠
3
5𝑌(𝑠) − 𝑠−

2
5(1) + 𝑌(𝑠) = 0 

𝑌(𝑠) =
𝑠−

2
5

𝑠
3
5 + 1

 

 :آوریم کهدست میه با اسهفاد  از تبدیل معکوس لاپلاس ب

ℒ−1{𝑌(𝑠)} = ℒ−1 {
𝑠−

2
5

𝑠
3
5 + 1

} 

𝑦(𝑡) = 𝑡0𝐸3
2
,1
(−𝑡

3
2) 

 :ا کمک تبدیل لاپلاس عبارت است ازحل معادله ب ،اینبنابر 

𝑦(𝑡) = ∑
(−1)𝑘𝑡

3
2
𝑘

Γ (
3
2 𝑘 + 1)

∞

𝑘=0

 

𝐷𝑡:  حل معادله ۲جدول 
3/5
𝑦(𝑡) + 𝑦(𝑡) = 0   ،𝑦(0) =  ℎ ی مخهلفهابا گام  1
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t Exact h=0.1 h=0.01 h =0.001 

0.1 0.7678739755 0.8045152458 0.7877864513 0.7738546169 

0.2 0.6784501641 0.7282761246 0.6959795154 0.6832188327 

0.3 0.6172164060 0.6689911473 0.6323033897 0.6211437222 

0.4 0.5705245733 0.6205521958 0.5835795054 0.5738329984 

0.5 0.5329336827 0.5799701444 0.5443246914 0.5357666259 

0.6 0.5016288628 0.5453330285 0.5116475045 0.5040850023 

0.7 0.4749400008 0.5153357092 0.4838141959 0.4770905461 

0.8 0.4517867114 0.4890475258 0.4596960457 0.4536849109 

0.9 0.4314268220 0.4657821282 0.4385145672 0.4331136058 

1.0 0.4133273409 0.4450195122 0.4197092683 0.4148348710 

 
 ℎی مخهلف هابا گامحل ت لیلی و حل عددی  :۲شکل 

𝐷𝑡. حل  ت لیلی معادله دیفرانسیل ۳مثال
9/10

𝑦(𝑡) +
2

3
𝑦(𝑡) = 𝑡2  با شرط اولیه𝑦(0) = به  1

 یابید. در کنند  تص یح -بینیپیش وشر را با کمک کمک تبدیل لاپلاس و حل عددی آن

 :حل

𝐷𝑡

9
10𝑦(𝑡) +

2

3
𝑦(𝑡) = 𝑡2, 𝑦(0) = 1 

ℒ {𝐷𝑡

9
10𝑦(𝑡) +

2

3
𝑦(𝑡)} = ℒ{𝑡2} 

𝑠
9
10𝑌(𝑠) − 𝑠−

1
10(1) +

2

3
𝑌(𝑠) =

2

𝑠3
 

𝑌(𝑠) =
2𝑠−3

𝑠
9
10 +

2
3

+
𝑠−

1
10

𝑠
9
10 +

2
3
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 :کهآوریم با اسهفاد  از تبدیل معکوس لاپلاس بدست می

ℒ−1{𝑌(𝑠)} = ℒ−1 {
2𝑠−3

𝑠
9
10 +

2
3

+
𝑠−

1
10

𝑠
9
10 +

2
3

} 

𝑦(𝑡) = 𝐸 9
10
,1
(−

2

3
𝑡
3
2) + ∫(𝑡 − 𝜏)−0.1𝐸 9

10
,
9
10
(−

2

3
(𝑡 − 𝜏)0.9)

𝑡

0

𝜏2𝑑𝜏 

 

𝐷𝑡حل معادله :  ۳جدول 
9/10

𝑦(𝑡) +
2

3
𝑦(𝑡) = 𝑡2   ،𝑦(0) =  ℎ ی مخهلفهابا گام  1

T Exact h=0.1 h=0.01 h =0.001 

0.1 0.9172621554 0.9174320497 0.9172626269 0.9172621454 

0.2 0.8542986273 0.8547638501 0.8543026088 0.8542986607 

0.3 0.8039927148 0.8047495890 0.8040001372 0.8039927902 

0.4 0.7659243607 0.7669699936 0.7659351896 0.7659244778 

0.5 0.7404857176 0.7418176328 0.7404999319 0.74048587761 

0.6 0.7283157564 0.7299315151 0.7283333379 0.7283159564 

0.7 0.7301351276 0.7320321111 0.7301560562 0.7301353689 

0.8 0.7466821856 0.7488574922 0.7467064372 0.7466824681 

0.9 0.7786848255 0.7811350330 0.7787121714 0.7786849489 

1.0 0.8268461616 0.8295681260 0.8268769681 0.8268465256 
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𝐷𝑡. حل  ت لیلی معادله دیفرانسیل 4مثال
0.8𝑦(𝑡) + 𝑦(𝑡) = 𝐶𝑜𝑠𝑡  با شرط اولیه𝑦(0) = به  1

 دریابید. کنند  تص یح -بینیپیش وشر کمک تبدیل لاپلاس و حل عددی آنرا با کمک 

 :حل

𝐷𝑡
0.8𝑦(𝑡) + 𝑦(𝑡) = 𝐶𝑜𝑠𝑡           𝑦(0) = 1 
ℒ{𝐷𝑡

0.8𝑦(𝑡) + 𝑦(𝑡)} = ℒ{𝐶𝑜𝑠𝑡 } 

𝑠0.8𝑌(𝑠) − 𝑠−0.2(1) + 𝑌(𝑠) =
𝑠

𝑠2 + 1
 

𝑌(𝑠) =
𝑠−

1
10

𝑠0.8 + 1
 

 آوریم کهبا اسهفاد  از تبدیل معکوس لاپلاس بدست می

ℒ−1{𝑌(𝑠)} = ℒ−1 {
𝑠−

1
10

𝑠0.8 + 1
} 

𝑦(𝑡) = 𝐸0.8(−𝑡
0.8) + ∫(𝑡 − 𝜏)−0.2𝐸0.8,0.8(−(𝑡 − 𝜏)

0.8)

𝑡

0

𝐶𝑜𝑠𝜏𝑑𝜏 

𝐷𝑡حل معادله  :۴جدول 
0.8𝑦(𝑡) + 𝑦(𝑡) = 𝐶𝑜𝑠𝑡   ،𝑦(0) =  ℎ ی مخهلفهابا گام  1

T Exact h=0.1 h=0.01 h =0.001 

0.1 0.9996804631 0.9995277120 0.9996999375 0.9996877888 

0.2 0.9978634877 0.9976493953 0.9979682132 0.9978938699 

0.3 0.9935930198 0.9935241589 0.9938480247 0.9936598333 

0.4 0.9861589729 0.9864670499 0.9866204979 0.9862729352 

0.5 0.9750177809 0.9759304111 0.9757321016 0.9751871609 

0.6 0.9597590801 0.9614862452 0.9607625782 0.9599899296 

0.7 0.9400869555 0.9428140870 0.9414065493 0.9403833185 

0.8 0.9158077133 0.9196920945 0.9174613991 0.9161718107 

0.9 0.8868210005 0.8919900136 0.8888184228 0.8872533945 

1.0 0.8531127402 0.8596632230 0.8554557649 0.8536124838 
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 ℎی مخهلف هابا گامحل ت لیلی و حل عددی : ۴شکل 

𝐷𝑡. حل  ت لیلی معادله دیفرانسیل 5مثال

1

2𝑦(𝑡) = 𝑒𝑡  با شرط اولیه𝑦(0) = به کمک تبدیل  1

 دریابید. کنند  تص یح -بینیپیش وشر لاپلاس و حل عددی آنرا با کمک 

 :حل

𝐷𝑡

1
2𝑦(𝑡) = 𝑒𝑡 , 𝑦(0) = 1 

ℒ{𝐷𝑡

1
2𝑦(𝑡) = ℒ{𝑒𝑡 } 

𝑠
1
2𝑌(𝑠) − 𝑠−

1
2(1) =

1

𝑠 − 1
 

𝑌(𝑠) =
𝑠−

1
2

𝑠 − 1
+
1

𝑠
 

 :آوریم کهتبدیل معکوس لاپلاس بدست میبا اسهفاد  از 

ℒ−1𝑌(𝑠) = ℒ−1
𝑠−

1
2

𝑠 − 1
+
1

𝑠
 

𝑦(𝑡) = 𝐸
1,
3
2

(𝑡) + 1, 

𝑦(𝑡) = 1 +∑
𝑡𝑘

Γ(𝑘 +
3
2)

∞

𝑘=0

 

𝐷𝑡حل معادله   :5جدول

1

2𝑦(𝑡) = 𝑒𝑡   ،𝑦(0) =  ℎ ی مخهلفهابا گام  1
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T Exact h=0.1 h=0.01 h =0.001 

0.1 1.381۵92۴796 1.3818۴3219۴ 1.381۵9۵۴۴72 1.381۵92۵107 

0.2 1.۵7761۴۴860 1.۵78020۴22۴ 1.۵7761906۴7 1.۵7761۴۵33۴ 

0.3 1.7۵78۴03963 1.7۵8388236۵ 1.7۵78۴6۴۵20 1.7۵78۴0۴۵86 

0.4 1.938218۴۴39 1.938907616۴ 1.93822۵97۵۵ 1.938218۵211 

0.5 2.12۵۵6۴6870 2.126۴00121۵ 2.12۵۵737۴96 2.12۵۵6۴7798 

0.6 2.32۴09۴2318 2.32۵08۴2۴۴۵ 2.32۴10۴91۵۵ 2.32۴09۴3۴11 

0.7 2.۵370۴99762 2.۵3820۵۴6۵7 2.۵370623977 2.۵370۵01030 

0.8 2.76729۴90۵7 2.768629031۴ 2.76730920۵1 2.76729۵0۵16 

0.9 3.017۵816996 3.019109779۵ 3.017۵980398 3.017۵818663 

1.0 3.2906982۵23 3.292۴377798 3.2907168187 3.290698۴۴1۵ 

 
 ℎی مخهلف هابا گامحل ت لیلی و حل عددی : 5شکل 

 معادلات حل برای کنند تص یح–بینیپیش عددی روش که دهندمی نشان مقاله این هاییافهه

 هایت لیل. است برخوردار مناسبی پایداری و دقت از کاپوتو، نوع کسی مشهق با خطی دیفرانسیل

 گام کاهش با روش این دقت که است آن بیانگر توضی ی، مسائل اساس بر شد انجام نظری و عددی

 همچنین. باشدمی 𝑂(ℎ2−𝛼) مرتبه از آن خطای و یابدمی افزایش توجهی قابل طوربه h زمانی

 است؛ وابسهه زمانی گام انداز  و کسی مشهق مقدار معادله، نوع به روش این پایداری که شد مشخص

 در .شود عددی جواب در نوسانات و ناپایداری باعث تواندمی بزرگ زمانی گام انهخاب که یگونهبه

 و مناسب زمانی گام انهخاب با است توانسهه کنند تص یح–بینیپیش روش شد ،بررسی عددی مسائل

 است آن مؤید نهایج این. دهد ارائه ت لیلی جواب با راسهاهم نهایجی دقیق، تص یح ضرایب اعمال

 شد  تنظیم درسهیبه زمانی گام و دارد ملایمی رفهار معادله که شرایطی در ویژهبه عددی، روش این که

 اولیه شرایط با کسی دیفرانسیل معادلات حل برای دقیق و مؤثر روشی عنوانبه تواندمی باشد،

 .شود گرفهه کار به کلاسیک
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 مناقشه و بحث

کنند  در حل تص یح–بینی، ارزیابی دقت و پایداری روش عددی پیشت قیقهدف اصلی این 

دهند که با کاهش نشان می  5تا  ۱معادلات دیفرانسیل خطی مرتبه کسی نوع کاپوتو بود. نهایج جداول 

به  0.1از   ℎکه ، زمانی۱ویژه، در جدولطور منظم کاهش یافهه است. به، خطای عددی بهℎگام انداز 

کاهش  1.4×210−  به حدود   1.3×110−حدود یافهه، اخهلاف بین مقدار دقیق و عددی از  کاهش 0 .01

به   موجب   0.۱ی که کاهش گام از یگونهشود؛ بهنیز مشاهد  می  2پیدا کرد  است. این روند در جدول

نیز همین رفهار  5و  ۴، ۳جداول  . تر به جواب ت لیلی شد  استسریع تقاربکاهش چشمگیر خطا و 

وسیعی از معادلات خطی،  حوز دهند که روش در کنند و نشان میهای مخهلف تأیید میرا برای مثال

تا  ۱های بررسی شکل. Li & Zeng, 2012)؛(Diethelm et al, 2002  عملکردی پایدار و دقیق دارد

روند کاهش خطا با  دهند،های ت لیلی و عددی را نمایش میکه مقایسه گرافیکی بین پاسخ 5

های های مهناظر با گام، من نی۳دهد. برای مثال، در شکلوضوح نشان میرا به  ℎتر شدن کوچک

، ۴اند که بیانگر دقت بالای روش است. در شکلتر تقریباً بر روی پاسخ ت لیلی قرار گرفههکوچک

طور کامل از همان مثال به شود که با کاهش گام دردید  می h=0.1 ترنوسانات جزئی در گام بزرگ

مطابقت   Zeng et al. (2018) و Garrappa (2010) های نظریبین رفهه است. این مشاهدات با ت لیل

 .یابی به پایداری و دقت بالا استدارد مبنی بر اینکه انهخاب مناسب گام زمانی، شرط اصلی دست

دهد که نشان می  5برای مثال، جدولمطابقت دارد.  𝑂(ℎ2−𝛼)نظری  میزان تقاربکاهش خطا با 

 های نظریبینیگام تقریباً به مقدار ثابت نزدیک است که با پیشنسبت خطاها هنگام نصف کردن انداز 

Podlubny (1999)  و Diethelm (2010) های عددی و دیهاخوانی دارد. چنین تطابقی میان هم

عنوان روشی کلاسیک کند و جایگا  آن را بهمی کنند  را تقویتتص یح–بینیتئوری، اعهبار روش پیش

 (.Mainardi, 2010 ؛Caputo, 1967) سازددر حل معادلات دیفرانسیل کسی تثبیت می

نشان  5تا  ۱های ها در شکلو بررسی ان راف 5تا  ۱ها در جداول از نظر پایداری عددی، مقایسه پاسخ

های که گامشود؛ در حالی تباعدوسانات و حهی تر ممکن است منجر به نداد که انهخاب گام بزرگ

 Zabidi et ؛Diethelm & Freed, 1999)) دهندبا پاسخ ت لیلی ارائه می نزدیکتر نهایجی کوچک

al., 2022). ). کنند  برای مسائلی با گام زمانی تص یح–بینیکنند که روش پیشها تأیید میاین یافهه

های سازی آن در م یطدیگر این روش، سادگی و قابلیت پیاد مزیت  .مناسب، کاملاً پایدار است

گام و ضرایب مبهنی بر تابع بهاست. الگوریهم گام Octave و  MATLAB ،Python  مانند ویم اسب

 های ولترا، موجب سازگاری طبیعی این روش با ساخهار مشهق کاپوتو شد  استگاما و انهگرال
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(Ishteva, 2005؛Garrappa, 2015 ) .کنند  تص یح–بینیشوند که روش پیشها سبب میاین ویژگی

های ویسکوالاسهیک، سازی انهقال حرارت یا دینامیک سیسهممانند مدل ؛حهی در کاربردهای عملی

 Liu et al., 2021) ؛Bagley & Torvik, 1983) ابزاری توانمند باشد

بعدی بود و مسائل نسیل خطی و یکبا وجود این مزایا، مطالعه حاضر م دود به معادلات دیفرا

های زمانی بسیار طولانی انتروالغیرخطی یا چندبعدی بررسی نشدند. همچنین، پایداری عددی در 

ازحد علاو  بر این، کاهش بیش (Zayernouri & Karniadakis, 2013) .طور جامع ت لیل نگردیدبه

شدت و نیاز به حافظه را به را افزایش باتم اس حجماما  ؛دهدگام، هرچند دقت را افزایش میانداز 

و  5تا  ۱ در مجموع، نهایج جداول (Ford & Simpson, 2001). ؛Li & Zeng, 2015) ) بردبالا می

کنند  با انهخاب مناسب گام زمانی، دقت تص یح–بینیدهند که روش پیشنشان می 5تا   1هایگراف

های ت لیلی پرهزینه یا اعهماد برای روشتواند جایگزینی قابلدهد و میو پایداری بالایی ارائه می

شود در ت قیقات آیند ، عملکرد این روش برای معادلات غیرخطی، اجرا باشد. پیشنهاد میغیرقابل

 های چندبعدی بررسی شود. سیسهم

 گیرینتیجه

برای حل معادلات دیفرانسیل خطی مرتبه کسی   کنند تص یح–بینیپیشدر این مقاله، روش عددی 

از نوع کاپوتو مورد ت لیل و ارزیابی دقیق قرار گرفت. این روش که بر پایه ترکیب صریح و ضمنی در 

م ور خود، گام و حافظهبهگیری از ساخهار گامتقریب مشهقات کسی توسعه یافهه است، توانسهه با بهر 

طویل و حافظه  وابسهه به گزشهههای دارای اثرات سازی دینامیک سیسهمقابل قبولی در شبیهعملکرد 

 .ه دهدیارا المدت

روش از دقت بالایی  مهجانس نشان داد که اینغیر نهایج عددی حاصل از حل معادلات مهجانس و 

ام زمانی به انداز  ویژه زمانی که گام زمانی مناسب انهخاب شود. در مواردی که گبه .برخوردار است

، خطای عددی بسیار ناچیز است و پاسخ عددی عملاً با پاسخ  h=0.0001مانند  ؛کافی کوچک باشد

کنند  در بسیاری از تص یح–بینیشود که روش پیشت لیلی مطابقت دارد. این ویژگی موجب می

 .اجرا باشدهای ت لیلی پیچید  یا غیرقابل کاربردهای عملی، جایگزینی مناسب برای روش

سازی ساد  آن سازد. پیاد از نظر م اسباتی نیز، این روش تعادل مناسبی میان دقت، پایداری برقرار می

 انجینریکارگیری آن را در مسائل ، قابلیت به اوکهیف و پایهون، مهلب  مانند ؛های م اسباتیدر م یط

پذیر گام زمانی گام این روش امکان تنظیم انعطافبهدهد. همچنین، ویژگی گامو فیزیکی گسترش می

 .کندله را فراهم میأمهناسب با شرایط مس
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کنند ، به دلیل ساخهار مؤثر، دقت بالا، تص یح–بینیتوان نهیجه گرفت که روش پیشدر مجموع، می

سازی، یک ابزار توانمند در حل عددی و سادگی پیاد  های دارای حافظهسازی پدید قابلیت مدل

تنها در ت قیقات نظری بلکه در شود. این روش نهه کسی م سوب میمعادلات دیفرانسیل مرتب

های دینامیکی و ت لیل رفهار مواد ل سیسهمو های انهقال، کنتر سازی پدید مانند مدل ؛کاربردهای عملی

در ت قیقات آیند ، کارایی این  که شودبالایی است. پیشنهاد می ویسکوالاسهیک نیز دارای پهانسیل

یافهه عددی یا های بهبودگیری از تکنیکبا بهر روش در معادلات غیرخطی، معادلات چندبعدی و نیز 

 .های یادگیری ماشین مورد بررسی قرار گیردترکیب با روش

 

  پیشنهادات و هامحدویت

کنند  در حل معادلات دیفرانسیل خطی مرتبه کسی نوع کاپوتو نهایج تص یح–بینیپیشاگرچه روش 

بعدی بود  است. همچنین، دقت یک دهد، این مطالعه م دود به معادلات خطی ودقیقی ارائه می

روش به شدت به انهخاب گام زمانی وابسهه است و کاهش گام برای افزایش دقت، منجر به افزایش 

طور کامل مورد بررسی ی زمانی طولانی نیز بههاانتروالشود. پایداری عددی در باتی میم اس مراحل

شود عملکرد این روش در معادلات ، پیشنهاد میت قیقدر راسهای گسترش این  .قرار نگرفهه است

سازی و های بهینهگیری از الگوریهمغیرخطی و چندبعدی مورد بررسی قرار گیرد. همچنین، بهر 

تر تواند به بهبود کارایی عددی و تنظیم خودکار پارامترها کمک کند. بررسی دقیقیادگیری ماشین می

 .تواند مسیر مناسبی برای ت قیقات آیند  باشدتر نیز میتر و دقیقهای سریعپایداری و توسعه نسخه

 سپاسگزاری

 تخنیکی همکاری ما با ت قیق این انجام در که کنیممی سپاسگزاری کابل پوهنهون ریاضیات پوهنځی از

 .نمود ایفا اساسی نقش ما ت قیقی کار تقویت در ایشان رهنمودهای و همکاری نمود. علمی و

 تحقیق در نویسندگان سهم

 جعفرم مد است. کرد  نظارت ت قیق روند بر و نمود  طرح را مقاله مفهوم نوری نورالله اسهاد م ترم

 مساوی طوربه نویسند  سه هر همچنان، اند.نمود  ترتیب را ابهدایی معلومات بیدار عبدالوکيل و حیدری

 .اندگرفهه سهم معلومات ت لیل و بازبینی در

 منافع تضاد

 .ندارد وجود منافع تضاد گونههیچ مقاله این با ارتباط در که نمایندمی تصدیق نویسندگان
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